Chapter 6 - Chemical Equations
Evidence of a Chemical Reaction 1.
2.
3.
4.

Rather than writing each reaction in words we use the correct chemical formulas for the reactants and products. We then change the coefficients in order to have the same number of each element on each side of the equation. This follows the Law of Conservation of Matter.

$\mathrm{A}(\mathrm{O}+\mathrm{B}(\mathrm{O} \rightarrow \mathrm{C}(\mathrm{O}+\mathrm{D}(\mathrm{l}$
States are indicated
by: \qquad
Conditions are written above or below the arrow.

Carbon and oxygen produce carbon dioxide when heated

Methane and oxygen when subjected to a spark produce carbon dioxide and water vapor.

In any ordinary chemical reaction, matter is neither created nor destroyed.

Therefore we must have the same number of atoms on each side of the equation

CHANGE ONLY COEFEICIENTS once you have the correct formulas for all reactant and products
NEVER CHANGE A SUBSCRIPT
Mercuric oxide when heated yields mercury + oxygen

Zinc + Hydrochloric acid \longrightarrow zinc chloride + hydrogen

STEPS TO BALANCE AN EQUATION

1.

Write correct formulas for
all reactants and products.
2. Balance by changing coefficients only so that the Law of Conservation is followed.

HINTS FOR BALANCING EQUATIONS

1. If an element appears in more than one place on one side of the equation, balance it last.
propane + oxygen >carbon dioxide + water
2. If a fraction will balance the equation, multiply the whole equation to eliminate the fraction
Sodium + water ->sodium hydroxide $+$ hydrogen
3. If all coefficients are divisible
by a small whole number, divide to get the simplest equation.

$$
4 \mathrm{C}+2 \mathrm{O}_{2} \longrightarrow 4 \mathrm{CO}
$$

4. If polyatomic ions are not changed between reactants and products, you should balance them as a group.

Aluminum sulfate +Magnesium hydroxide->

Sulfuric acid + Sodium hydroxide
5. If an odd number of atoms appear on one side of the equation, multiply the odd number by 2 and continue.

Potassium chlorate >potassium chloride + oxygen

Complete the following:
Calcium carbonate + Sulfuric acid ->Calcium sulfate + carbon dioxide + water

Sodium chloride + Ammonia gas + Water + Carbon dioxide \longrightarrow Ammonium Chloride + Sodium bicarbonate

Magnesium + Water >Magnesium hydroxide + Hydrogen

HW 11 pp

Quiz 11-Balancing Chemical Equations

- Reactions in Aqueous Solutions

Driving forces in chemical reactions 1.
2.
3.
4.
I. Precipitation Reactions - Solid
is produced
When an ionic substance dissolves in water ions are produced
$\mathrm{NaCl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$

$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{O}$
Electrolyte - compound which when dissolved in water produces ions and therefore carries an electrical current

$$
\mathrm{K}_{2} \mathrm{CrO}_{4}(\mathrm{~s})
$$

$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}(\mathrm{~s})$

Solubility of Common Ionic Compounds

 Soluble Compounds \quad ExceptionsSodium, potassium, and ammonium compounds

Acetates, nitrates, chlorates, and perchlorates

Halides (chlorides, bromides, and iodides)

Sulfates

Lead (II), silver, and mercury (I) halides are insoluble

Calcium, strontium, barium, and lead(II) sulfates are insoluble

Insoluble Compounds

Carbonates and Phosphates and Chromates

Hydroxides

Sulfides and Oxides

Exceptions

Sodium, potassium, and ammonium compounds are soluble

Sodium, potassium, calcium, strontium, and barium compounds are soluble

Sodium, potassium, ammonium, and calcium compounds are soluble

Predict whether the following are soluble?

CaO

$\mathrm{K}_{2} \mathrm{O}$
$\mathrm{NH}_{4} \mathbf{F}$

NaBr
BaSO_{4}
CuCO_{3}
$\mathbf{H g}\left(\mathrm{NO}_{3}\right)_{2}$
$\mathrm{Cu}(\mathrm{OH})_{2}$
MnS

In Double Displacement reactions, the ions exchange positions

$$
\mathbf{A B}+\mathbf{C D} \longrightarrow
$$

Write the balanced equation for the following Double Displacement (Metathesis) reactions:

Barium nitrate + Potassium chromate \longrightarrow

Silver nitrate + Potassium chloride \longrightarrow

Potassium nitrate + Barium chloride \longrightarrow

Sodium sulfate + Plumbous nitrate \longrightarrow

Potassium hydroxide + Ferrous nitrate $\longrightarrow>$

In order to determine whether a precipitate

 reaction has occurred you must look at$* *$

II Formation of a Gas (bubbles)

If $\mathrm{H}_{2} \mathrm{~S}$ is a product, it is a gas
If $\mathbf{H}_{2} \mathbf{C O}_{3}$
are products
$\mathrm{H}_{2} \mathrm{SO}_{3}$
they will
$\mathrm{NH}_{4} \mathrm{OH}$
produce gases

Calcium Carbonate + Sodium hydroxide

Ammonium Sulfate + Sodium hydroxide \longrightarrow

Potassium sulfide + Nitric acid \longrightarrow

Sodium sulfite + Hydrochloric acid \longrightarrow

III Reactions that produce heat

Neutralization reactions are accompanied by the release of heat

Acids - contain or produce \mathbf{H}^{+1} ion in aqueous soln.
taste sour
strong electrolyte $\mathbf{- 1 0 0 \%}$ ionized if strong HCl
HNO_{3}
$\mathrm{H}_{2} \mathrm{SO}_{4}$
Bases - "alkalis" -
bitter taste
contain $\mathbf{O H}^{-1}$
slippery
strong bases are $\mathbf{1 0 0 \%}$ ionized
NaOH
KOH

Sodium hydroxide + Hydrochloric acid

Sulfuric acid + potassium hydroxide \qquad
7.3 Describing reactions in aqueous solution Molecular equation - complete balanced equation(including states)

Ionic equation - anything in aqueous solution is shown as ions (include states)

Net Ionic Equation - eliminates spectator ions (include states)

Complete each of the above for the reaction:
Potassium sulfate + Barium chloride \longrightarrow
<><><><><><><><><><><><><><><><><><><>
Sulfuric acid + Potassium hydroxide \longrightarrow
Molecular

Ionic

Net Ionic

Sodium Carbonate + Hydrochloric acid \longrightarrow Molecular

Ionic

Net Ionic

Potassium nitrate + Sodium sulfate Molecular

Ionic

Net Ionic

For each of the following reactions indicate any evidence that a chemical reaction has occurred. If no reaction occurs, put "NR". You do not have to write a balanced equation.

Reaction	Evidence
Calcium carbonate + Sulfuric acid	
Ammonium sulfate + Sodium hydroxide	
Potassium sulfide + Nitric acid	
Sodium sulfite + Hydrocloric acid	

HW 12
pp

Quiz 12 - Molecular, Ionic, and Net Ionic Equations

CLASSIFYING CHEMICAL REACTIONS

I Oxidation-Reduction (Redox)
Transfer of electrons - change in oxidation \#
Metal + Nonmetal
Metal electrons, nonmetal \qquad electrons

Na
Cl

$$
\begin{aligned}
& \text { Change in oxidation number therefore redox } \\
& \qquad \mathbf{M g}+\mathbf{C l}_{2}-\mathbf{M g C l}_{2}
\end{aligned}
$$

Aluminum + Ferric oxide \longrightarrow Iron + Aluminum oxide

Sulfur + Oxygen \longrightarrow Sulfur dioxide
If you have an element on one side of the equation and it is in a compound on the other side, it is a Redox reaction

II Double Displacement (Metathesis)
$\mathrm{AB}+\mathrm{CD} \longrightarrow$
A. Precipitation Silver nitrate + Potassium chloride \longrightarrow

B. Neutralization
Hydrochloric acid + Potassium hydroxide

C. Formation of a gas $\left(\mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{\mathbf{2}}, \mathrm{SO}_{\mathbf{2}}, \mathbf{N H}_{3}\right)$

Sodium sulfite + Hydrochloric acid \longrightarrow

III Single Displacement
Element + Compound \rightarrow Element + Compound
$\mathrm{X}+\mathrm{YZ} \longrightarrow$
nonmetal more
reactive than

$\mathrm{X}+\mathrm{YZ} \longrightarrow$

nonmetal less
reactive than \qquad
X +
metal more
reactive than \qquad
X +
$\mathrm{YZ} \longrightarrow$
metal less
reactive than \qquad

Zinc + Hydrochloric acid ------>

Chlorine + Sodium iodide ------>

IV Combustion Reactions - combine with oxygen
$\mathrm{C}_{3} \mathbf{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})----->$
$\mathrm{C}_{8} \mathrm{H}_{18}(\mathbf{l})+\mathrm{O}_{\mathbf{2}}(\mathrm{g}) \ldots$

V Synthesis - Combination
Element + Element --------> Compound
Element + Compound -----> Compound
Compound + Compound ---> Compound
 Hydrogen + Chlorine --->

Uranium + Fluorine --> Uranium(VI) fluoride

$$
\text { Potassium oxide }+ \text { Oxygen ---> Potassium } \quad \text { superoxide }
$$

Lead(II) chloride + Chlorine --> Lead(IV) chloride

Sulfur trioxide + water ---> Sulfuric acid

VI Decomposition - Opposite of synthesis

One reactant ---> Two or more products

 Calcium Carbonate $--->$ Calcium oxide $+\underset{\text { dioxide }}{\text { Carbon }}$

Sodium bicarbonate ---> Sodium carbonate + water + carbon dioxide

Calcium sulfate pentahydrate --->

$$
\begin{array}{|c|c|}
\hline \text { HW } 13 & \text { pp 211-214 \#41,44,50,53,55,57,58,61(a,c), } \\
63(\mathbf{a}, \mathbf{b}), 65(\mathbf{a}, \mathrm{~b}), 88,89
\end{array}
$$

Quiz 13 - Types of Chemical Reactions and Balancing Equations

Practice Equations ---->
Magnesium + Sulfur ---->
Sodium phosphate + Zinc chloride---->
Zinc + Mercuric nitrate

Calcium carbonate ---> Calcium oxide + Carbon dioxide

Aluminum + Oxygen ---->
Ferric oxide + Aluminum
Sulfuric acid + Potassium hydroxide
Plumbic oxide---> Lead + Oxygen

