Chapter 6 - Chemical Equations Evidence of a Chemical Reaction 1. 2. 3. 4.

Rather than writing each reaction in words we use the correct chemical formulas for the reactants and products. We then change the coefficients in order to have the same number of each element on each side of the equation. This follows the Law of Conservation of Matter.

Reactants -----> Products

A() + B() - >C() + D()

States are indicated by:_____

Conditions are written above or below the arrow.

Carbon and oxygen produce carbon dioxide when heated

Methane and oxygen when subjected to a spark produce carbon dioxide and water vapor.

In any ordinary chemical reaction, matter is neither created nor destroyed.

Therefore we must have the same number of atoms on each side of the equation

CHANGE ONLY COEFFICIENTS once you have the correct formulas for all reactant and products NEVER CHANGE A SUBSCRIPT

Mercuric oxide when heated yields mercury + oxygen Zinc + Hydrochloric acid -> zinc chloride + hydrogen

STEPS TO BALANCE AN EQUATION

1.

Write correct formulas for all reactants and products.

2. Balance by <u>changing</u> <u>coefficients only</u> so that the Law of Conservation is followed.

HINTS FOR BALANCING EQUATIONS

1. If an element appears in more than one place on one side of the equation, balance it last.

propane + oxygen—>carbon dioxide + water

2. If a fraction will balance the equation, multiply the whole equation to eliminate the fraction Sodium + water ->sodium hydroxide hydrogen
3. If all coefficients are divisible

by a small whole number, divide to get the simplest equation.

 $4 C + 2 O_2 \longrightarrow 4 CO$

4. If polyatomic ions are not changed between reactants and products, you should balance them as a group.

Aluminum sulfate +Magnesium hydroxide >

Sulfuric acid + Sodium hydroxide ---->

5. If an odd number of atoms appear on one side of the equation, multiply the odd number by 2 and continue.

Potassium chlorate ->potassium chloride + oxygen

Complete	the	following:
----------	-----	------------

Calcium carbonate + Sulfuric acid ->Calcium

sulfate + carbon dioxide + water

Sodium chloride + Ammonia gas + Water + Carbon dioxide --> Ammonium Chloride + Sodium bicarbonate

Magnesium + Water—>Magnesium hydroxide + Hydrogen

HW 11 pp

Quiz 11-Balancing Chemical Equations

Reactions in Aqueous Solutions
Driving forces in chemical reactions

1.
2.
3.

4.

<u>I. Precipitation Reactions - Solid</u> <u>is produced</u>

When an ionic substance dissolves in water ions are produced

NaCl (s) + $H_{2}O = >$

 $NH_4Cl (s) + H_2O \longrightarrow$

 $Ba(NO_3)_2 + H_2O \longrightarrow$

Electrolyte - compound which when dissolved in water produces ions and therefore carries an electrical current

 $K_2 CrO_4(s)$

 $C_{12}H_{22}O_{11 (s)}$

Solubility of Common Ionic Compounds		
Soluble Compounds	Exceptions	
Sodium, potassium, and ammonium compounds		
Acetates, nitrates, chlorates, and perchlorates		
Halides (chlorides, bromides, and iodides)	Lead (II), silver, and mercury (I) halides are insoluble	
Sulfates	Calcium, strontium, barium, and lead(II) sulfates are insoluble	
Insoluble Compounds	Exceptions	
Carbonates and Phosphates and Chromates	Sodium, potassium, and ammonium compounds are soluble	
Hydroxides	Sodium, potassium, calcium, strontium, and barium compounds are soluble	
Sulfides and Oxides	Sodium, potassium, ammonium, and calcium _{compounds} are soluble	

Predict whether the following are soluble ?

CaO	NaBr	Cu(OH) ₂
K ₂ O	BaSO ₄	MnS
NH ₄ F	CuCO ₃	Hg(NO ₃) ₂

In *<u>Double Displacement</u>* reactions, the ions exchange positions

 $AB + CD \longrightarrow$

Write the balanced equation for the following Double Displacement (Metathesis) reactions:

Barium nitrate + Potassium chromate —>

Silver nitrate + Potassium chloride ---->

Potassium nitrate + Barium chloride ——>

Sodium sulfate + Plumbous nitrate ---->

Potassium hydroxide + Ferrous nitrate —>

In order to determine whether a precipitate reaction has occurred you must look at _____

II Formation of a Gas (bubbles)

If H₂S is a product, it is a gas

If H_2CO_3	are products
H_2SO_3	they will
NH ₄ OH	produce gases

Calcium Carbonate + Sodium hydroxide ----->

Ammonium Sulfate + Sodium hydroxide ----->

Potassium sulfide + Nitric acid ----->

Sodium sulfite + Hydrochloric acid ----->

Neutralization reactions are accompanied by the release of heat Acids - contain or produce H⁺¹ ion in aqueous soln. taste sour strong electrolyte - 100% ionized if strong HCl HNO₃ H_2SO_4 Bases - "alkalis" bitter taste contain OH⁻¹ slippery strong bases are 100% ionized NaOH **KOH**

Sodium hydroxide + Hydrochloric acid ----->

Sulfuric acid + potassium hydroxide ----->

7.3 Describing reactions in aqueous solution <u>Molecular equation</u> - complete balanced equation(including states)

<u>Ionic equation</u> - anything in aqueous solution is shown as ions (include states)

<u>Net Ionic Equation</u> - eliminates spectator ions (include states)

Complete each of the above for the reaction:

Potassium sulfate + Barium chloride ——>

<><><><><><><><><><><><><><><><><><><><>	>
Sulfuric acid + Potassium hydroxide>	
Molecular	
Ionic	
Net Ionic	

Sodium Carbonate + Hydrochloric acid>
Molecular
r •
Ionic
Net Ionic

Potassium nitrate + Sodium sulfate	
Molecular	
Ionic	
Net Ionic	

For each of the following reactions indicate any evidence that a chemical reaction has occurred. If no reaction occurs, put "NR". You do <u>not</u> have to write a balanced equation.

Reaction	Evidence
Calcium carbonate + Sulfuric acid	
Ammonium sulfate + Sodium hydroxide	
Potassium sulfide + Nitric acid	
Sodium sulfite + Hydrocloric acid	

Quiz 12 - Molecular, Ionic, and Net Ionic Equations

CLASSIFYING CHEMICAL REACTIONS

I Oxidation-Reduction (Redox) Transfer of electrons - change in oxidation

Metal + Nonmetal		
Metal	electrons, nonmetal	electrons
Na		
Cl		

Change in oxidation number therefore redox

 $Mg + Cl_2 - MgCl_2$

Aluminum + Ferric oxide ---> Iron + Aluminum oxide

Sulfur + Oxygen ----> Sulfur dioxide

If you have an element on one side of the equation and it is in a compound on the other side, it is a Redox reaction **II Double Displacement (Metathesis)**

AB + **CD** ---->

A. Precipitation Silver nitrate + Potassium chloride ---->

B. Neutralization Hydrochloric acid + Potassium hydroxide

C. Formation of a gas (H₂S, CO₂, SO₂, NH₃) Sodium sulfite + Hydrochloric acid ---->

III Single Displacement

Element + Compound -> Element + Compound

$$X + YZ \longrightarrow$$

nonmetal more reactive than____

Zinc + Hydrochloric acid ----->

Potassium + water ----->

Chlorine + Sodium iodide ----->

IV Combustion Reactions - combine with oxygen

 $C_{3}H_{8}(g) + O_{2}(g) ---->$

 $C_8H_{18}(l) + O_2(g) ---->$

V Synthesis - Combination

Uranium + Fluorine --> Uranium(VI) fluoride

Potassium oxide + Oxygen ---> Potassium superoxide

Lead(II) chloride + Chlorine --> Lead(IV) chloride

Sulfur trioxide + water ---> Sulfuric acid

VI Decomposition - Opposite of synthesis

One reactant ---> Two or more products

Calcium Carbonate ----> Calcium oxide + Carbon dioxide

Sodium bicarbonate ---> Sodium carbonate + water + carbon dioxide

Calcium sulfate pentahydrate --->

HW 13	pp 211-214 #41,44,50,53,55,57,58,61(a,c),
	63(a,b),65(a,b),88,89

Quiz 13 - Types of Chemical Reactions and Balancing Equations **Practice Equations ---->**

Magnesium + Sulfur ---->

Sodium phosphate + Zinc chloride---->

Zinc + Mercuric nitrate ---->

Calcium carbonate ---> Calcium oxide + Carbon dioxide

Aluminum + Oxygen ---->

Ferric oxide + Aluminum

Sulfuric acid + Potassium hydroxide

Plumbic oxide---> Lead + Oxygen