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1. Number Systems 
 
Number Systems and Number Bases 
The number system we are most familiar with is called the Arabic number system. It is a 

positionally based symbol system which makes computation significantly easier than 

many of the alternatives. Basically it works by placing the least significant digit on the 

right and progressing to the left toward more significant digits. Each place represents a 

quantity times a power of the base unit. 

 

Base 10 
The most commonly used number base is base 10. In base 10, the right most position is 

the 1’s, the next position to the left is the 10’s, then the 100’s, and so on. Each position 

represents a power of 10. The 1’s position is 10 to the zeroth power, or 10
0
. 

(Interestingly, any number to the zeroth power is equal to 1.) The 10’s position is 10
1
, the 

100’s position is 10
2
, and so on. Using this method, we can define a numeric value as 

large as we want. To make a larger value, just create a new position to the left. 

 

Numeric values are defined by using intermediate values in each position, and then 

summing the quantity. For example, the value represented by 167 can be interpreted as 

 

 1*10
2
 + 6*10

1
 + 7*10

0
 

 

Base 2 
Numeric values can be represented in base 2 also. Computers are limited to storing 

everything in bits, which are usually electrical charges interpreted as on or off, or 1 and 0. 

Computer scientists and programmers commonly work in base 2 because the 1 and 0 

quantities used by computers lend themselves well when attempting to perform most 

kinds of arithmetic, especially when organized using the Arabic system.  

 

In base 2, the right most position, or bit, is the 1’s position. The next position to the left is 

the 2’s position while the next position is the 4’s position. Notice that each position is a 

power of 2, just as each position in base 10 represented a power of 10. 

 

For example, the value represented by the sequence 01001101 can be interpreted as 

 

 0*2
7
 + 1*2

6
 + 0*2

5
 + 0*2

4
 + 1*2

3
 + 1*2

2
 + 0*2

1
 + 1*2

0
 

or  

 

 0*128 + 1*64 + 0*32 + 0*16 + 1*8 + 1*4 +0*2 + 1*1 

 

Can you see a pattern? 
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To avoid confusion, we often add a subscript to indicate the number base when we are 

using multiple number bases, or a number base other than base 10. 

 

162h          h means hexadecimal 16216         16 means base 16 

162d          d means decimal 16210         10 means base 10 

162o          o means octal 1628          8 means base 8 

101b          b means binary 1012          2 means base 2 
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Converting Binary to Decimal 
Converting a numeric value represented in binary into decimal can be accomplished with 

little more than some paper and a calculator. (The calculator makes the arithmetic easier, 

but isn’t essential.) 

 

A method that has worked for me is to write the quantity for the power of 2 over or 

beneath each bit. For example, the sequence 01001101 can be deciphered as shown 

below: 

 
128 64 32 16 8 4 2 1 

0 1 0 0 1 1 0 1 

 

Wherever a position is 1, add that positional value to our working sum. Thus, for the 

example above, the sum would be 

 

 64 + 8 + 4 + 1 

 

or equivalent to 77 in base 10. 

 

Remember that, like base 10, base 2 values can be as large as they need to be to represent 

a value. In the example above the value was represented by 8 bits. 
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Converting Decimal to Binary 
If converting a value represented in binary into decimal can be performed using addition, 

then there may be a way to convert a decimal value into binary using subtraction. Just 

such a method will be used here. 

 

As an example let’s convert the decimal vale 167. The first thing to do is to create a list 

of values representing powers of 2 to the right. (It doesn’t have to be to the right, but it 

needs to go somewhere. 

 

 167 128 

  64 

  32 

  16 

  8 

  4 

  2 

  1 

 

Going down the list of powers of 2, determine if that value can be subtracted resulting in 

either a positive or zero remainder. (Technically that can be called a ‘non-negative’ 

remainder.) In the case of 128, it can be subtracted. That fact is identified by placing a ‘1’ 

next to the 128. 

 

 167 128 1 

 -128 64 

 39 32 

  16 

  8 

  4 

  2 

  1 

 

 

Going down the list, can 64 be subtracted from 32 giving us a non-negative result? No, it 

can’t, so a 0 is placed next to 64. 

 

 167 128 1 

 -128 64 0 

 39 32 

  16 

  8 

  4 

  2 

  1 
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We continue down the list, subtracting where we can. 

 

 167 128 1 

 -128 64 0 

 39 32 1 

 -32 16 0 

 7 8 0 

 -4 4 1 

 3 2 1 

 -2 1 1 

 1 

 -1 

 0 

 

When the result is finally 0, you can stop. Our bit pattern is the right-most column of 1’s 

and 0’s. The most significant bit is at the top, and the least significant bit is at the bottom. 

Thus, in this case, we can write that 10100111 in base 2 is equivalent to 167 in base 10. 

 

Our solution can be verified by using the method we already know to convert the binary 

number into decimal. Thus, we would write: 

 

 128 + 32 + 4 + 2 +1 = 167 

 

which gives us the value we started out with in the conversion process. Whenever there is 

any doubt, you should always be able to verify your solution by reversing the process. 

 

There is another method which requires that you divide by 2. In this method, you need to 

divide the result from each step using remainders, and the use the result in the next step. 

For the value 167, the process would look like this: 

 

 167 / 2 = 83 r 1 (note that the remainder is to the right of the little ‘r’) 

 83 / 2 = 41 r 1 

 41 / 2 = 20 r 1 

 20 / 2 = 10 r 0 

 10 / 2 = 5 r 0 

 5 / 2 = 2 r 1 

 2 / 2 = 1 r 0 

 1 / 2 = 0 r 1 

 

When you get to 0, stop. The bit pattern is the ‘remainders’ with the least significant bit 

at the top, and the most significant bit at the bottom. (This is just the opposite of the 

previous method.) Thus, our bit pattern is 10100111. 

 

Both methods work well, and can be verified.  
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Hexadecimal Number System [Base-16] 
The hexadecimal number system uses sixteen values to represent numbers. The values 

are, 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

with 0 having the least value and F having the greatest value. Columns are used in the 

same way as in the decimal system, in that the left most column is used to represent the 

greatest value.  

Hexadecimal is often used to represent values [numbers and memory addresses] in 

computer systems.  

Decimal  Binary  Hexadecimal  

0  0000  0  

1  0001  1  

2  0010  2  

3  0011  3  

4  0100  4  

5  0101  5  

6  0110  6  

7  0111  7  

8  1000  8  

9  1001  9  

10  1010  A  

11  1011  B  

12  1100  C  

13  1101  D  

14  1110  E  

15  1111  F  

 

Hexadecimal values are often used with a notation so that you, as programmer, know that 

the value is in hexadecimal. Depending on the system the number may be preceded by #, 

0#, 0&, 0c, or some other notation. 
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Converting Decimal to Hexadecimal 
To convert a decimal number to a hexadecimal, use the method used earlier to convert 

decimal to binary, but divide by 16 instead of by 2. 

 

 232 / 16 = 14 with a remainder of 8 

  14 / 16 = 0 with a remainder of E (14 decimal = E) 

 

  = E816 

 

Another method is to convert the decimal value into a binary number, and then convert 

that result as shown below. 

 

Converting Hexadecimal to Decimal 
Let’s look at an example converting 176 in hexadecimal to decimal, or base 10. 

Each column represents a power of 16,  

 

 17616 =  

   6 * 16
0
 =   6 

  7 * 16
1
 = 112 

  1 * 16
2
 = 256 

   374 in base 10 

 

Another example converting FD: 

 

 FD16 =  

   D * 16
0
 =   13 

  F * 16
1
 = 240 

   253 in base 10 

 

Converting Binary to Hexadecimal 
Let’s consider the case of converting the binary number 10110 to hexadecimal. Each 

hexadecimal digit represents 4 binary bits. Split the binary number into groups of 4 bits, 

starting from the right. In this case, 10110 is equivalent to 00010110 (we can always add 

zeros to the left to make the number ‘big’ enough), so we can split the binary number like 

this: 

 

 0001  0110 

 

The left group, 0001, is equal to 1. 

The right group, 0110, is equal to 6. 

 

Because both digits are less than ten, we can simply combine them for the answer. 

 

 0001  0110 

 1 6 

  = 16 in hexadecimal, or 1616 
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Adding Binary Numbers 
Binary numbers can be added using the same techniques you learned in grade school 

because they use the Arabic numeral system, which is to say that each position represents 

a quantity of that power of the number base. (Extra points if you actually understood that 

last sentence.) In grade school you learned to add decimal numbers by placing one 

number over another so that the columns line up, and sum each column. In base 10 this 

would look something like this: 

 

 22 

 +46 

 68 

 

Where necessary you carry a portion to the next power of 10, as in this example: 

 
 1 

 27 

 +46 

 73 

 

The same techniques can be applied to adding numbers in base 2. We will use the values 

already shown above, but already converted to base 2. 

 

 00010110 (22) 

 +00101110 (46) 

 

We know a couple of values in base 2: 0+0=0, 1+0=1, 0+1=1, 1+1=10 (2 in base 10). 

Starting from the right (just like you learned in grade school) add the two values in the 

column, in this case 0+0 (=0). 

 

 00010110 (22) 

 +00101110 (46) 

 0 

 

Moving to the next column to the left, we add 1+1 (=10). We place a 0 and carry the 1. 

 

 1__ 

 00010110 (22) 

 +00101110 (46) 

 00 

 

The next column could be difficult, but shouldn’t be too bad. Add 1+1+1 (=11 in base 2). 

Place the right 1 and carry the left 1. 

 

 11__ 

 00010110 (22) 

 +00101110 (46) 

 100 
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This can be continued until all columns have been summed. 

 

 11111__  

 00010110 (22) 

 +00101110 (46) 

 01000100 (64*1 + 4*1) 

 

We can verify the solution by converting it to decimal (which is 22 + 46 = 64 + 4 = 68). 
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Negative Numbers in Binary 
Negative values are interesting in computer science because, by definition, they split the 

range of values in two, half being positive, and the other half being negative. (This isn’t 

quite true, but its close enough for now.) Practical limitations also mean that the 

programmer must decide in advance how many bits will be used in a binary word. For 

example, an 8 bit word, which usually ranges from 0 to 255, is now -128 to 127 (Why are 

the two values different by 1?). This may not seem significant, but can easily become so. 

Thus, the first thing you as a programmer have to decide is how big your binary word is 

going to be. 

 

There are at least three ways to represent negative numbers in binary. The simplest is to 

simply make one of the bits the ‘negative’ bit.  This is called signed magnitude.  

In this the left–most bit is simply turned on (made high, or 1) and the remaining bits hold 

the absolute value of the number. For example, 10010100 is negative because the left 

most bit (10010100)(MSB) is a 1. This has worked but requires that the programmer 

always identify that the number is negative, and then treat it in a special way. At the very 

least this is inconvenient. There are severe limitations to this method and it is not used 

often but has the advantage of making it easy to see that a value is negative. 

 

The next most common is a method called one’s complement. In this method, all of the 

bits are simply inverted, i.e. 1’s become 0’s, and 0’s become 1’s. Thus, the binary 

number 01101001 becomes 10010110. It has an advantage similar to signed magnitude in 

that the left most bit is 1 when the value is negative. But few use one’s complement 

directly because of problems of representing zero (0). 

 

The third method, two’s complement, also uses the left-most (most significant) bit to 

easily identify a negative number, and uses one’s complement in part, but adds a value. 

This value is one (1). To convert an integer into it’s negative counterpart, invert all of the 

bits as in one’s complement, and then increment, or add the value of one. 

 

For example, the value 2710 is 000110112 using 8 bits. The two’s complement of 27, or  

-27, is obtained by inverting the bits, to get 11100100, and then incrementing, or adding 

the value one to get 11100101. 

 

 00011011 2710 

 11100100 invert all of the bits 

               1 increment, or add 1 

 11100101 result represents -2710 

 

If the result of the increment results in a carry after the left-most bit, that bit is simply 

discarded with no impact on the value. That is, if carrying during addition would place a 

one in a bit too far to the left – more than the defined size of the ‘word’ - then that bit is 

ignored. 
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One of the more interesting details is that values processed by two’s complement can be 

reversed by applying two’s complement. (The technical term for that is reflective.) 

 

 11100101 -2710 

 00011010 invert all of the bits 

               1 increment, or add one 

 00011011 result is back to 2710 

 

This feature is convenient because it follows the mathematical rule that –(-a) = a. 

 

Notice that in all cases a bit has been lost from the possible magnitude of the value in 

order to accommodate the range of negative values. This means that a 16 bit integer can 

have as many as 65536 values, and either have a range of 0 to 65535, or -32768 to 32767. 

(Why are the two values different by 1?) 

 

Whenever possible, try to avoid the least negative value in a word. For example, in an 

eight bit word (256 possible values), avoid -128. Why do you think this might be so? Try 

it and see for yourself.  
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Subtraction in Binary 
Subtraction can be particularly difficult in binary. To make is easier we alter the rules of 

the game slightly. When considering subtraction, we commonly think of a pair of number 

separated by a minus sign, as in 46-21. But if you think back you may recall that another 

way to examine this same relationship is 46 + (-21). Thus, the easiest way to subtract two 

numbers is to make the subtrahend negative. We can see this if we consider the following 

example: 

 

 7 – 4 = 7 + (-4)  (hint: the 4 is the subtrahend) 

 

This allows us to use the addition method we already know and are comfortable with, and 

simply convert the second value to a negative. This simplifies many aspects of computer 

hardware design, though not necessarily software. In the case of hardware, a bypass is 

provided in the ALU (arithmetic logic unit) and a separate subtraction component in the 

ALU isn’t needed. 

 

 
 

Binary values created using two’s complement can be used for addition as well as 

multiplication.  

 

Reg A Reg B 

ADDER 

Switch 

Convert to negative 

Subtract? 
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Multiplication in Binary 
Binary multiplication is based on the fact that 1 * 1 = 1, and that 1 * 0 = 0. In most cases 

you will see column multiplication, just like you did in grade school with decimal 

numbers. The primary difference is that there is even less arithmetic when multiplying 

binary values. This is because of the fact that any number multiplied by 1 is equal to 

itself, and any value multiplied by 0 (zero) is equal to 0.  

 

In the examples below, you can use exactly the same techniques for large number 

multiplication that you learned in grade school. As a point of information, 1+1+1=11 in 

binary. 

 

Extra space has been added to place carry values, which are in italics. 

 

Here is an example if 11 x 11: 

   11 

 x 11 

 11_ carry values 

   11 

  11_ 

 1001 

 

Another example, 1001 x 10: 

 

   1001 

 x   10 

   0000 no carry values 

  1001_ 

  10010 

 

One more example, 1011 x 11: 

 

   1011 

 x   11 

 1111__ carry values 

   1011 

  1011_ 

 100001 
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Multiplication and Number Size 
A challenge facing most programmers is how ‘large’ to make integers. While most 

compilers set integer size to 32 bits (signed values range from 0 to  ) the programmer 

often has the option to define larger or smaller word size, usually in powers of two. 

 

For example, most C compilers give the programmer the option of 8, 16, 32, or even 64 

bits for the integer. The programmer must select a integer size that is large enough. The 

reason is that multiplication can double the word size. 

 

For example,  
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Multiplying Negative Values 
Negative numeric values using two’s complement can be multiplied with valid results. 

There are just two things to keep in mind when performing this kind of operation. 

 

First, you must determine in advance how ‘large’ your numeric values are expected to be. 

By this, I mean the number bits. For example, if you  


