
Maxwell-Boltzmann Distribution 
 
The Maxwell-Boltzmann distribution of molecular speeds in a gas is actually a probability density function 
of a continuous variable, v, the speed of a molecule. You may be familiar with probability distribution 
functions for discrete variables. For example, the probability of getting heads by flipping a fair coin is 2

1 ; 

the probability of rolling snake-eyes (two ones) with a pair of dice is 36
1 ; and the probability of rolling a 

seven is 6
1 . For continuous variables, you can not obtain the probability of a molecule having a specific 

velocity from the probability density function. Rather, you must determine the probability of a molecule's 
speed being in a certain range by integrating the probability density function over that range. 
 
In other words, you can not evaluate the Maxwell-Boltzmann distribution function for v = 2.0 m/s and get 
the probability of a molecule travelling at that speed. What you can do is determine the probability that a 
molecule's speed is between 1.9 m/s and 2.1 m/s by integrating the Maxwell-Boltzmann distribution 
function using 1.9 m/s and 2.1 m/s as the limits. 
 
However, you can calculate expected values for v and v2, which you can use to calculate the average speed 
and average kinetic energy of a molecule, respectively. 
 
The basic properties of probability density functions (pdfs), and the definition of expected value can be 
found in any probability textbook, such as Introduction to Probability by Bertsekas and Tsitsiklis, or A 
First Course in Probability by Sheldon Ross. 
 
First, the value of the integral of the pdf over all possibilities must be one. 
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= 1pdf dxx  

 
In the case of the Maxwell-Boltzmann distribution, f(v) = 0 for v less than zero, because speed is never 
negative. Our integrals over all possible speeds will be from zero to infinity. Also, the expected value of a 
given function of x is the integral of that function weighted by the probability density function: 
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The mean value, µ, is the expected value of the integration variable: 
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The variance is the expected value of (x – µ)2: 
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We will be using the mean value equation, but not the variance equation. We will be finding the expected 
value of the square of the speed, which is not the same as the square of the expected value of the speed. 
 

22 vv ≠  

Triton College  1 of 8 
PHY 107 
John Baliga 



The Maxwell-Boltzmann distribution is: 
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First, let's check to see if it normalized. 
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There are many ways to perform this integration. One way commonly used in statistical mechanics 
applications is detailed below. 
 
A substitution will be used that changes the integration variable to one that is dimensionless: 
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The integration becomes: 
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By choosing a variable that simplifies the argument of the exponential, the overall integral is simplified. 
 
Also, by choosing a dimensionless integration variable, any dimensioned quantities can be factored out of 
the integral. Before the integration in terms of u was even performed, the factor outside of it was found to 
be a dimensionless constant. Since the value of the integral was supposed to be the dimensionless constant 
1, we have preliminary confirmation that the distribution function has the correct dimensions. In other 
words, all the "physics" was factored out first, and the integral was just a dimensionless factor. 
 
Evaluation of this integral: 
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is covered later. 
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Before finding vv =av  and 2
rms vv = , we will find the most probable speed, vmp. 

 
The most probable speed is found by finding the maximum of f(v): 
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The solution set for this equation is: 
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Since 
m
kT2

−  is outside the domain, we exclude it. The minimum value of f(v) is zero, and since f(0) = 0, 

we will exclude v = 0. Since the function is zero at the zero end of its domain, approaches zero as v goes to 

infinity, and is positive-valued for all non-zero v, we can safely assume that 
m
kTv 2

=  corresponds to a 

maximum value for f(v). We will forego the second derivative test. Therefore: 
 

m
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To find the expected value of v, v : 
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Again, letting 
kT
mvu

2
= : 
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The fact that 
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To find vrms, we need to find 2v : 
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Again, letting 
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The fact that π
8
3
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− dueu u  will be shown in the next section. 

 
In summary: 
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Note that: 
 

rmsavmp vvv <<  
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Evaluation of improper integrals involving  
2xe−

 

Since we need to evaluate more than one improper integral containing the term , let's start with a 
general integral of this form and see if we can save some time. 

2xe−

 
Let Ik represent the integral from zero to infinity with xk in the integrand: 
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To evaluate this integral, we will integrate by parts. We will assume that k is non-negative. 
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Assuming that k is non-negative is important when evaluating the uv term at x = 0, and for avoiding 
division by zero at k = –1. This restriction does not conflict with our purposes. This does not give us the 
value of any integral, but it does give us something very valuable. The relation derived here is a recurrence 
relation. If we know any Ik, then we can quickly evaluate the corresponding Ik+2, if k is non-negative. 
 
Actually, we are going to use this recurrence relation in a different form by substituting k = n – 2. 
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With our recurrence relation, we need only to evaluate the integral for two non-negative consecutive 
integer values of n, and we can easily find evaluate the integral for any such n. Of course, we will have to 
use methods other than integration by parts, since that method did not give us direct answers. 
 
We will evaluate I0 and I1, and use our recurrence relation to get the values through I4. 
 
To evaluate I0, we will use a common trick: 
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From here, we simply use the substitution: rdrdurdrduru =−⇒−=⇒−=
2
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Evaluating I1 is straightforward: 
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With the two values π
2
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determine the required values. 
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Values of In for integer values of n greater than four can be found in a straightforward manner if desired. 
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