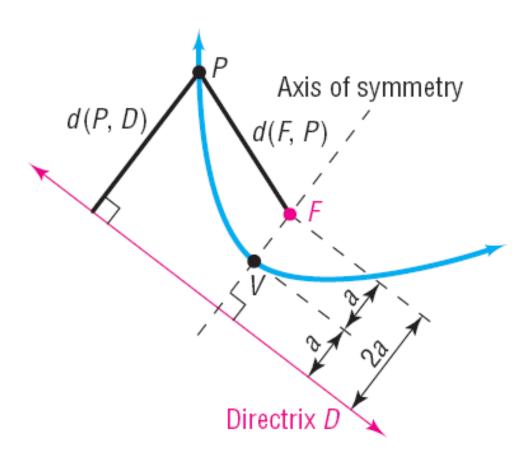
Section 11.2 The Parabola

A **parabola** is the collection of all points P in the plane that are the same distance from a fixed point F as they are from a fixed line D. The point F is called the **focus** of the parabola, and the line D is its **directrix**. As a result, a parabola is the set of points P for which

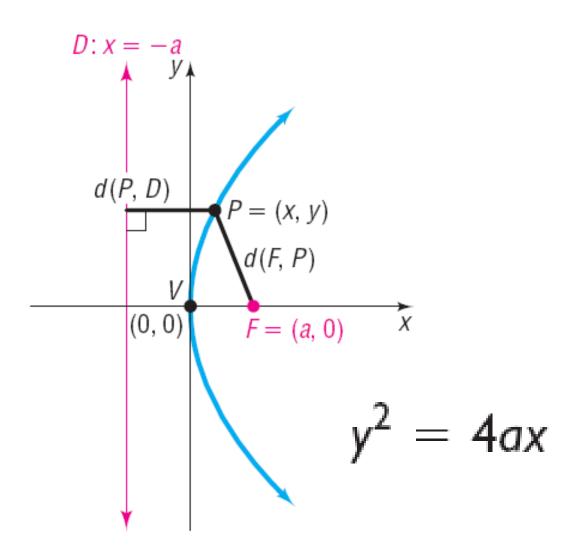
$$d(F,P) = d(P,D) \tag{1}$$



OBJECTIVE 1

1 Analyze Parabolas with Vertex at the Origin

$$d(F,P) = d(P,D)$$



Theorem

Equation of a Parabola

Vertex at (0, 0), Focus at (a, 0), a > 0

The equation of a parabola with vertex at (0, 0),

focus at (a, 0), and directrix x = -a, a > 0, is

$$y^2 = 4ax$$

Finding the Equation of a Parabola and Graphing It

Find an equation of the parabola with vertex at (0, 0) and focus at (4, 0). Graph the equation.

Graphing a Parabola Using a Graphing Utility

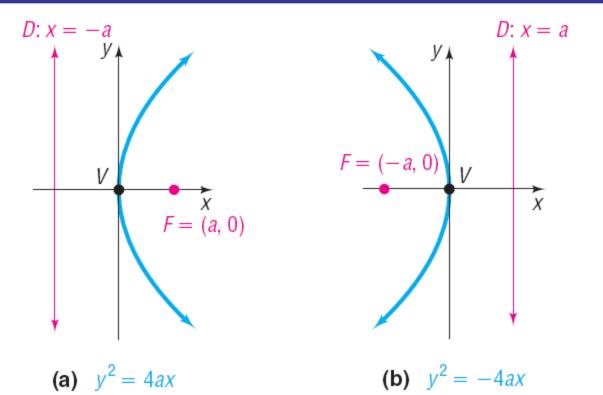
Graph the parabola $y^2 = 16x$.

Analyzing the Equation of a Parabola

Analyze the equation $y^2 = 10x$.

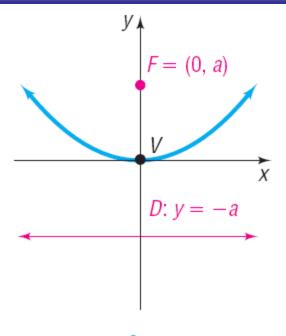
EQUATIONS OF A PARABOLA VERTEX AT (0, 0); FOCUS ON AN AXIS; a > 0

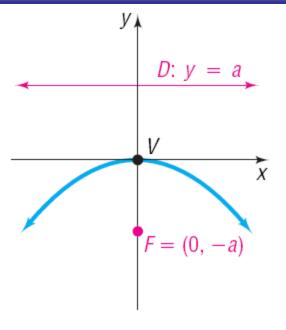
Vertex	Focus	Directrix	Equation	Description
(0, 0)	(a, 0)	x = -a	$y^2 = 4ax$	Parabola, axis of symmetry is the x-axis, opens right
(0, 0)	(-a, 0)	x = a	$y^2 = -4ax$	Parabola, axis of symmetry is the x-axis, opens left



EQUATIONS OF A PARABOLA VERTEX AT (0, 0); FOCUS ON AN AXIS; a > 0

Vertex	Focus	Directrix	Equation	Description
(0, 0)	(0, <i>a</i>)	y = -a	$x^2 = 4ay$	Parabola, axis of symmetry is the y-axis, opens up
(0, 0)	(0, -a)	y = a	$x^2 = -4ay$	Parabola, axis of symmetry is the y-axis, opens down



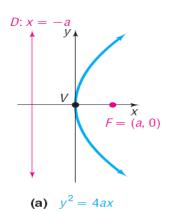


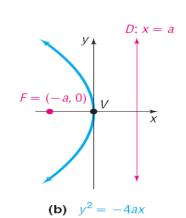
(c)
$$x^2 = 4ay$$

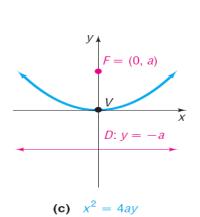
(d)
$$x^2 = -4ay$$

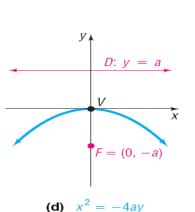
EQUATIONS OF A PARABOLA VERTEX AT (0, 0); FOCUS ON AN AXIS; a > 0

Vertex	Focus	Directrix	Equation	Description
(0, 0)	(a, 0)	x = -a	$y^2 = 4ax$	Parabola, axis of symmetry is the x-axis, opens right
(0, 0)	(-a, 0)	x = a	$y^2 = -4ax$	Parabola, axis of symmetry is the x-axis, opens left
(0, 0)	(0, <i>a</i>)	y = -a	$x^2 = 4ay$	Parabola, axis of symmetry is the y-axis, opens up
(0,0)	(0, -a)	y = a	$x^2 = -4ay$	Parabola, axis of symmetry is the y-axis, opens down









Analyzing the Equation of a Parabola

Analyze the equation $x^2 = -8y$.

Finding the Equation of a Parabola

Find the equation of the parabola with focus at (0, -12) and directrix the line y = 12. Graph the equation.

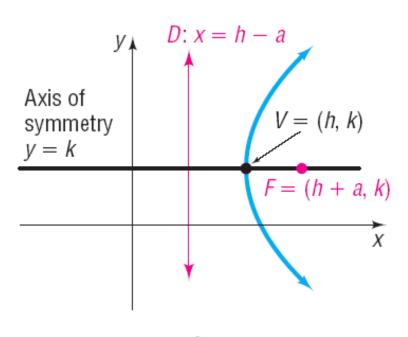
Finding the Equation of a Parabola

Find the equation of a parabola with vertex at (0, 0) if its axis of symmetry is the y-axis and its graph contains the point (-1, -4). Find its focus and directrix, and graph the equation.

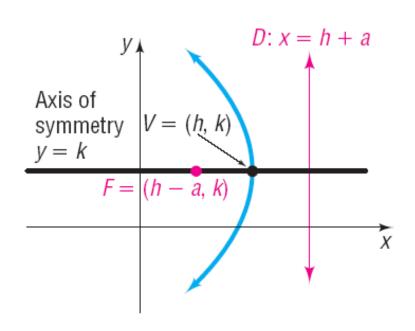
OBJECTIVE 2

2 Analyze Parabolas with Vertex at (h, k)

Vertex	Focus	Directrix	Equation	Description
(h, k)	(h + a, k)	x = h - a	$(y-k)^2=4a(x-h)$	Parabola, axis of symmetry parallel to x-axis, opens right
(h, k)	(h - a, k)	x = h + a	$(y-k)^2=-4a(x-h)$	Parabola, axis of symmetry parallel to x-axis, opens left

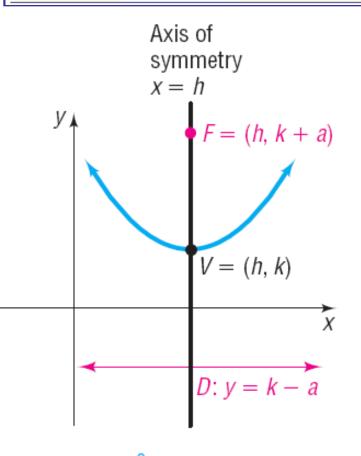


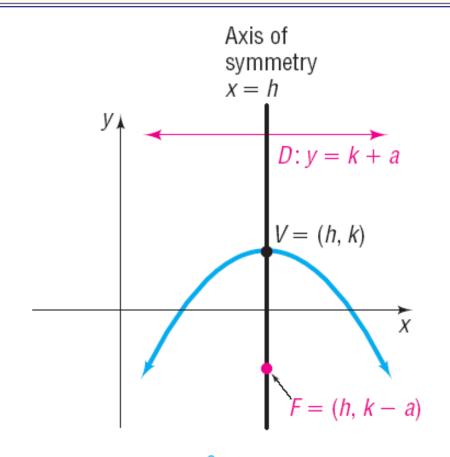
(a)
$$(y-k)^2 = 4a(x-h)$$



(b)
$$(y-k)^2 = -4a(x-h)$$

Vertex	Focus	Directrix	Equation	Description
(h, k)	(h, k + a)	y = k - a	$(x-h)^2=4a(y-k)$	Parabola, axis of symmetry parallel to y-axis, opens up
(h, k)	(h, k - a)	y = k + a	$(x-h)^2=-4a(y-k)$	Parabola, axis of symmetry parallel to y-axis, opens down

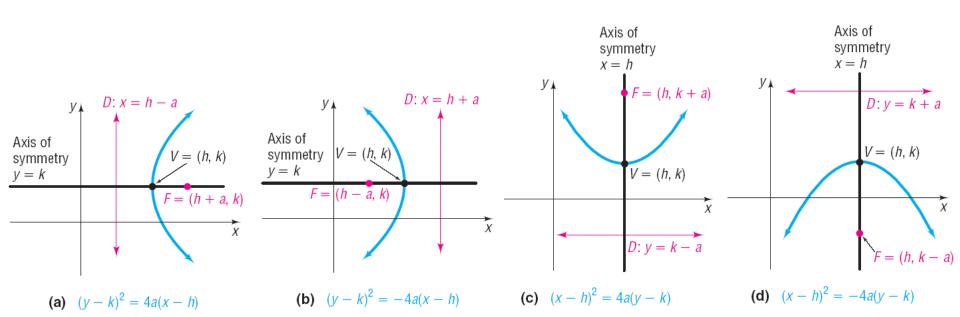




(c)
$$(x - h)^2 = 4a(y - k)$$

(d)
$$(x - h)^2 = -4a(y - k)$$

Vertex	Focus	Directrix	Equation	Description
(h, k)	(h + a, k)	x = h - a	$(y-k)^2=4a(x-h)$	Parabola, axis of symmetry parallel to x-axis, opens right
(h, k)	(h - a, k)	x = h + a	$(y-k)^2=-4a(x-h)$	Parabola, axis of symmetry parallel to x-axis, opens left
(h, k)	(h, k + a)	y = k - a	$(x-h)^2=4a(y-k)$	Parabola, axis of symmetry parallel to y-axis, opens up
(h, k)	(h, k - a)	y = k + a	$(x-h)^2=-4a(y-k)$	Parabola, axis of symmetry parallel to y-axis, opens down



Finding the Equation of a Parabola, Vertex Not at the Origin

Find an equation of the parabola with vertex at (5, -1) and focus at (2, -1). Graph the equation.

Using a Graphing Utility to Graph a Parabola, Vertex Not at Origin

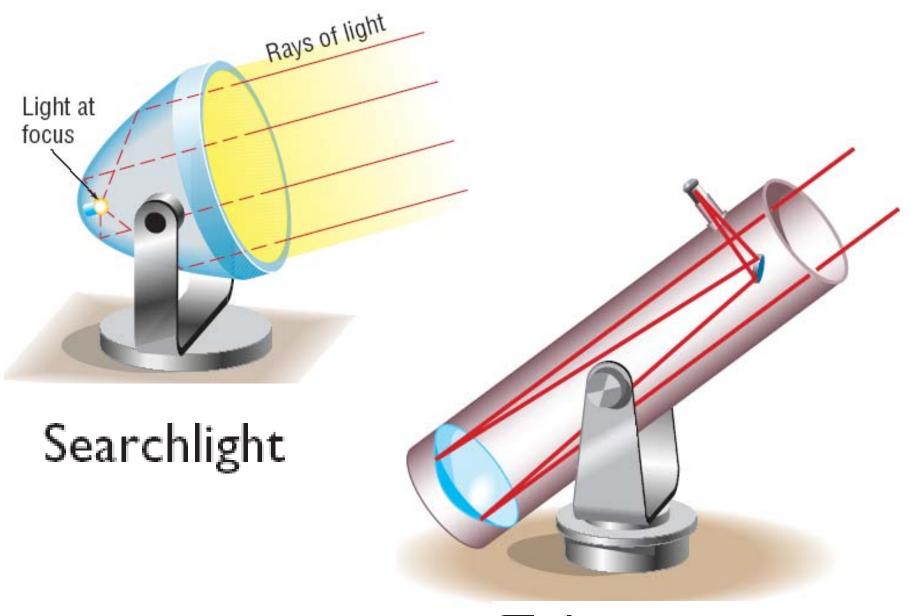
Using a graphing utility, graph the equation $(y+2)^2 = 12(x-4)$

Analyzing the Equation of a Parabola

Analyze the equation: $y^2 - 4x + 4y = 0$

OBJECTIVE 3

3 Solve Applied Problems Involving Parabolas



Telescope

Satellite Dish

A satellite dish is shaped like a paraboloid of revolution. The signals that emanate from a satellite strike the surface of the dish and are reflected to a single point, where the receiver is located. If the dish is 10 ft across at its opening and 3 feet deep at its center, at what position should the receiver be placed?

