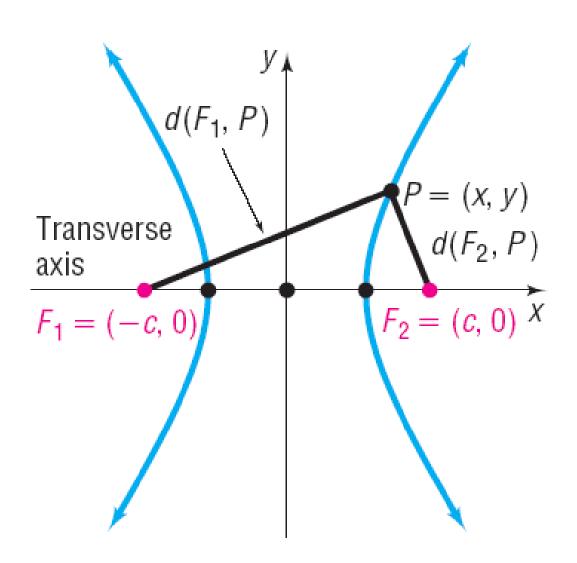

Section 11.4 The Hyperbola


A **hyperbola** is the collection of all points in the plane the difference of whose distances from two fixed points, called the **foci**, is a constant.

OBJECTIVE 1

1 Analyze Hyperbolas with Center at the Origin

$$d(F_1, P) - d(F_2, P) = \pm 2a$$

Equation of a Hyperbola Center at (0, 0) Transverse Axis along the x-Axis

An equation of the hyperbola with center at (0, 0), foci at (-c, 0) and (c, 0), and vertices at (-a, 0) and (a, 0) is

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$

The transverse axis is the *x*-axis.

$$V_1 = (-a, 0)$$
Transverse $V_2 = (a, 0)$
 $F_1 = (-c, 0)$
 $V_2 = (a, 0)$

y A

Finding and Graphing an Equation of a Hyperbola

Find an equation of the hyperbola with center at the origin, one focus at (-5, 0), and one vertex at (2, 0). Graph the equation.

Using a Graphing Utility to Graph a Hyperbola

Use a graphing utility to graph the ellipse $\frac{x^2}{36} - \frac{y^2}{25} = 1$

Analyzing the Equation of a Hyperbola

Analyze the equation
$$\frac{x^2}{25} - \frac{y^2}{16} = 1$$

Equation of a Hyperbola; Center at (0, 0); Transverse Axis along the y-Axis

An equation of the hyperbola with center at (0,0), foci at (0,-c) and (0,c), and vertices at (0,-a) and (0,a) is

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$
, where $b^2 = c^2 - a^2$

The transverse axis is the y-axis.

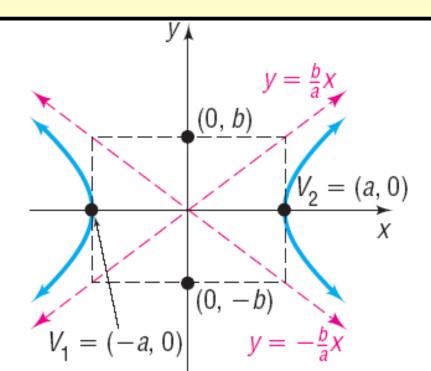
$$F_2 = (0, c)$$
 $V_2 = (0, a)$
 $V_1 = (0, -a)$

Analyzing the Equation of a Hyperbola

Analyze the equation $2y^2 - 8x^2 = 32$

Finding an Equation of a Hyperbola

Find an equation of the hyperbola having one vertex at (0, 4) and foci at (0, -7) and (0, 7). Graph the equation.


OBJECTIVE 2

2 Find the Asymptotes of a Hyperbola

Asymptotes of a Hyperbola

The hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ has the two oblique asymptotes

$$y = \frac{b}{a}x$$
 and $y = -\frac{b}{a}x$

Asymptotes of a Hyperbola

The hyperbola $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$ has the two oblique asymptotes

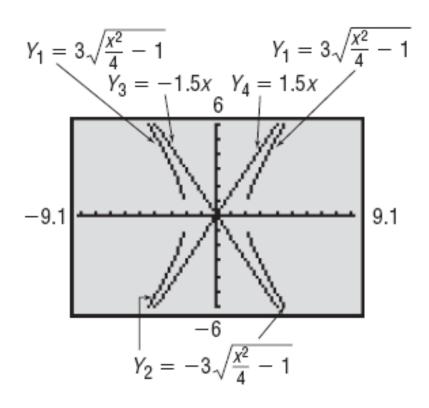
$$y = \frac{a}{b}x$$
 and $y = -\frac{a}{b}x$

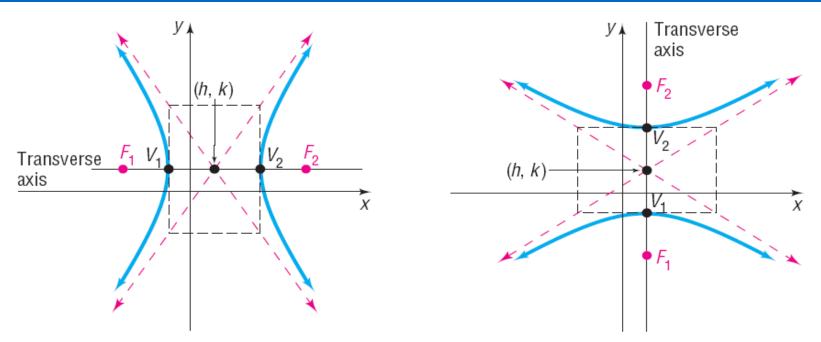
Analyzing the Equation of a Hyperbola

Analyze the equation $4x^2 - y^2 = 16$

Seeing the Concept

Refer to Figure 44(b). Create a TABLE using Y_1 and Y_4 with x = 10, 100, 1000, and 10,000. Compare the values of Y_1 and Y_4 . Repeat for Y_1 and Y_3 , Y_2 and Y_3 , and Y_4 .




Figure 44 (b)

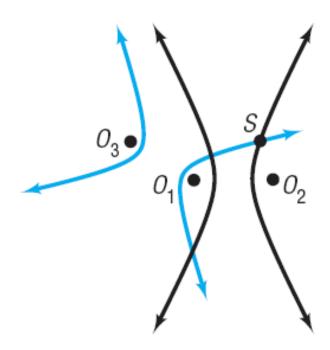
OBJECTIVE 3

3 Analyze Hyperbolas with Center at (h, k)

HYPERBOLAS WITH CENTER AT (h, k) AND TRANSVERSE AXIS PARALLEL TO A COORDINATE AXIS

Parallel to the x-axis $(h \pm c, k)$ $(h \pm a, k)$ $\frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1$, $b^2 = c^2 - a^2$ $y - k = \pm \frac{b}{a}(x - k)$ Parallel to the y-axis $(h, k \pm c)$ $(h, k \pm a)$ $\frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1$, $b^2 = c^2 - a^2$ $y - k = \pm \frac{a}{b}(x - k)$	Center	Transverse Axis	Foci	Vertices	Equation	Asymptotes
Parallel to the (h, k) y-axis $(h, k \pm c)$ $(h, k \pm a)$ $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$, $b^2 = c^2 - a^2$ $y - k = \pm \frac{a}{b}(x-b)$	(h, k)	Parallel to the x-axis	(h ± c, k)	$(h \pm a, k)$	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1, b^2 = c^2 - a^2$	$y-k=\pm\frac{b}{a}(x-h)$
	(h, k)	Parallel to the y-axis	$(h, k \pm c)$	$(h, k \pm a)$	$\frac{(y-k)^2}{a^2}-\frac{(x-h)^2}{b^2}=1, b^2=c^2-a^2$	$y-k=\pm\frac{a}{b}(x-h)$

Finding an Equation of a Hyperbola, Center Not at the Origin


Find an equation for the hyperbola with center at (-1, 3), one focus at (-1, -1), and one vertex at (-1, 4). Graph the equation by hand.

Analyzing the Equation of a Hyperbola

Analyze the equation $-16x^2 + y^2 - 64x - 6y - 71 = 0$

OBJECTIVE 4

4 Solve Applied Problems Involving Hyperbolas

Look at Figure 48. Suppose that three microphones are located at points O_1 , O_2 , and O_3 (the foci of the two hyperbolas). In addition, suppose that a gun is fired at S and the microphone at O_1 records the gun shot 1 second after the microphone at O_2 . Because sound travels at about 1100 feet per second, we conclude that the microphone at O_1 is 1100 feet farther from the gunshot than O_2 . We can model this situation by saying that S lies on the same branch of a hyperbola with foci at O_1 and O_2 . (Do you see why? The difference of the distances from S to O_1 and from S to O_2 is the constant 1100.) If the third microphone at O_3 records the gunshot 2 seconds after O_1 , then S will lie on a branch of a second hyperbola with foci at O_1 and O_3 . In this case, the constant difference will be 2200. The intersection of the two hyperbolas will identify the location of S.

EXAMPLE Lightning Strikes

Suppose that two people standing 1 mile apart both see a flash of lightning. After a period of time, the person standing at point A hears the thunder. One second later, the person standing at point B hears the thunder. If the person at B is due west of the person at A and the lightning strike is known to occur due north of the person standing at point A, where did the lightning strike?