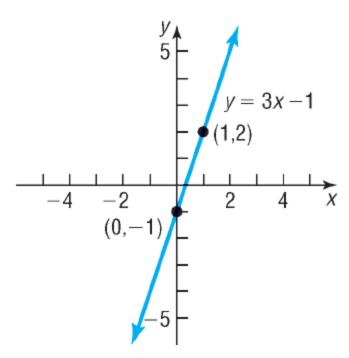
Section 3.1 Functions

OBJECTIVE 1

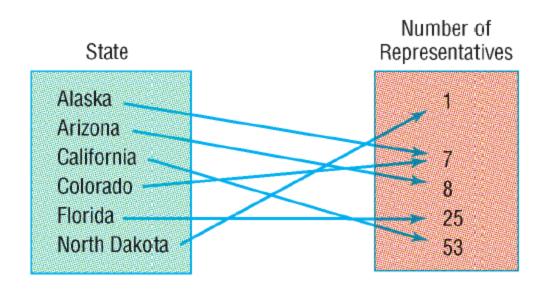
1 Determine Whether a Relation Represents a Function

A **relation** is a correspondence between two sets.

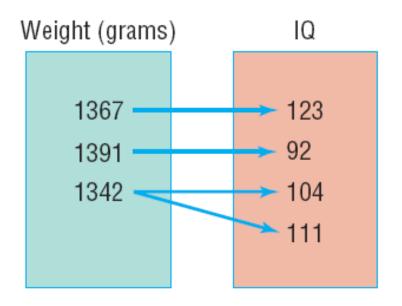
If x and y are two elements in these sets and if a relation exists between x and y, then we say that x corresponds to y or that y depends on x, and we write $x \rightarrow y$.

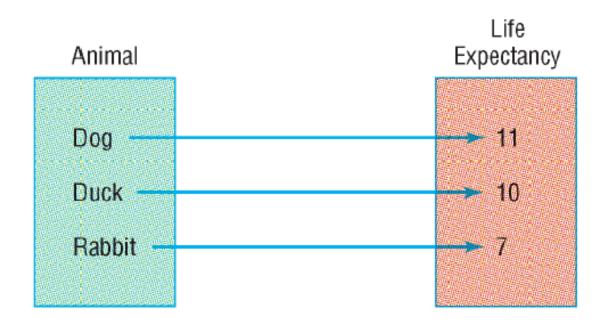


Maps and Ordered Pairs as Relations



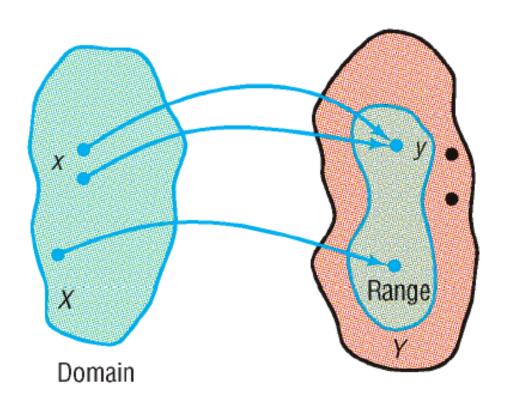
{(Alaska, 7), (Arizona, 8), (California, 53), (Colorado, 7), (Florida, 25), (North Dakota, 1)}



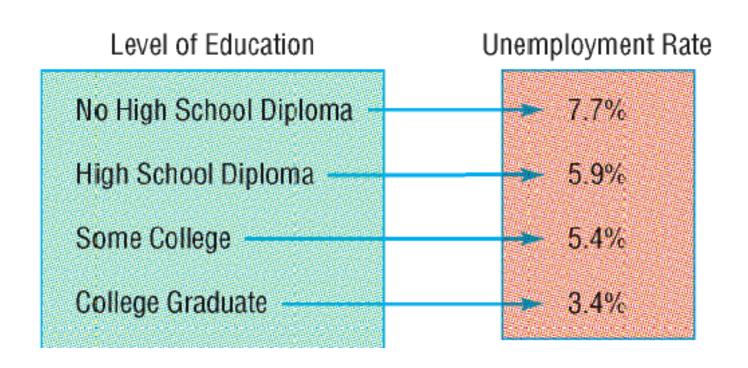


FUNCTION

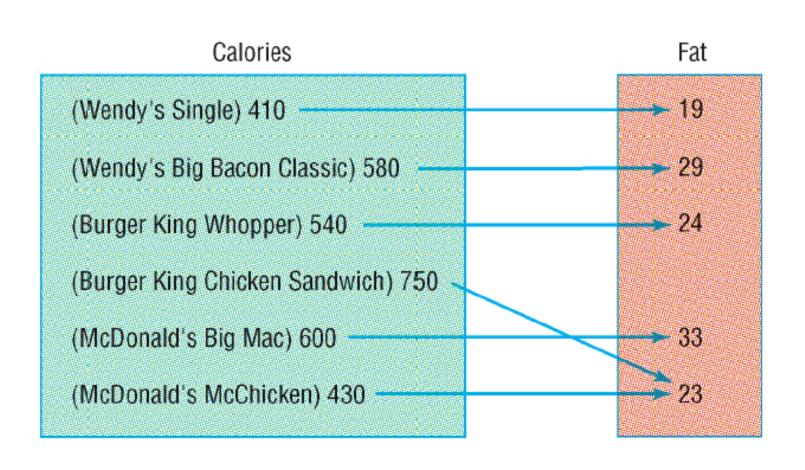
Let X and Y be two nonempty sets.* A **function** from X into Y is a relation that associates with each element of X exactly one element of Y.



Determining Whether a Relation Represents a Function



Determining Whether a Relation Represents a Function



Determining Whether a Relation Represents a Function

Determining Whether a Relation Represents a Function

Determine whether each relation represents a function. If it is a function, state the domain and range.

$$\{(2,3),(4,1),(3,-2),(2,-1)\}$$

$$\{(-2, 3), (4, 1), (3, -2), (2, -1)\}$$

$$\{(2,3), (4,3), (3,3), (2,-1)\}$$

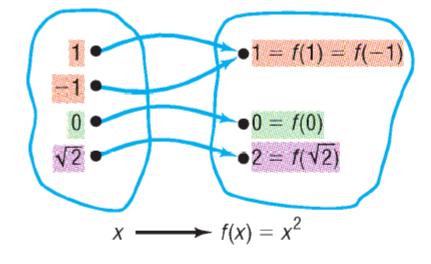
Determining Whether an Equation Is a Function

Determine if the equation $y = -\frac{1}{2}x - 3$ defines y as a function of x.

Determine if the equation $x = 2y^2 + 1$ defines y as a function of x.

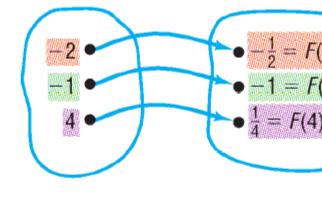
OBJECTIVE 2

Find the Value of a Function



Domain

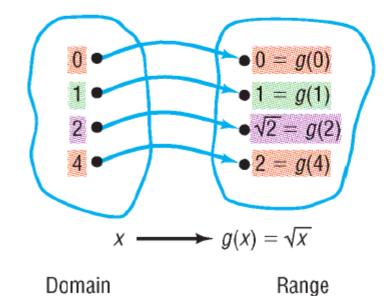
(a)
$$f(x) = x^2$$



$$X \longrightarrow F(X) = \frac{1}{X}$$

Domain

(b)
$$F(x) = \frac{1}{x}$$



Range (c) $g(x) = \sqrt{x}$

$$3 = G(0) = G(-2) = G(3)$$

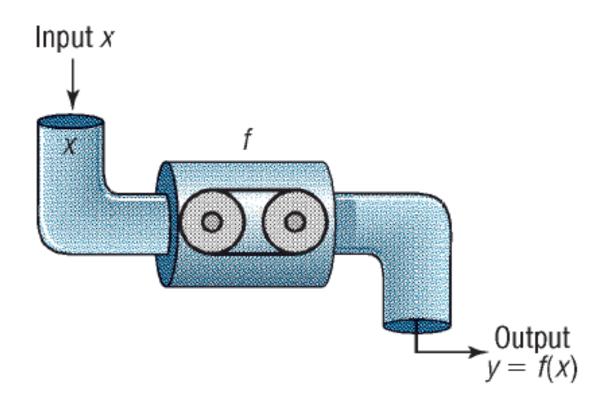
$$x \longrightarrow G(x) = 3$$

Domain

Range

(d)
$$G(x) = 3$$

FUNCTION MACHINE



- 1. It only accepts numbers from the domain of the function.
- 2. For each input, there is exactly one output (which may be repeated for different inputs).

Illustrating Language Used with Functions

The name of the function is *f*.

The independent variable or argument of f is p.

$$f(p) = p^2$$

If
$$q = f(p)$$

q is called the dependent variable

$$f(3) = 9$$

9 is the *value* of f at 3 or 9 is the *image* of 3.

State the *domain* and the *range* of *f*.

Finding Values of a Function

For the function f defined by $f(x) = -3x^2 + 2x$, evaluate:

(a)
$$f(3)$$

(b)
$$f(x) + f(3)$$

(c)
$$3f(x)$$

(d)
$$f(-x)$$

(e)
$$-f(x)$$

(f)
$$f(3x)$$

(g)
$$f(x + 3)$$

(h)
$$\frac{f(x+h) - f(x)}{h} \quad h \neq 0$$

Finding Values of a Function on a Calculator

(a)
$$f(x) = x^2$$
; $f(1.234) =$

(b)
$$F(x) = \frac{1}{x}$$
; $F(1.234) =$

(c)
$$g(x) = \sqrt{x}$$
; $g(1.234) =$

Implicit Form of a Function

Implicit Form

$$3x + y = 5$$

$$x^2 - y = 6$$

$$xy = 4$$

Explicit Form

$$y = f(x) = -3x + 5$$

$$y = f(x) = x^2 - 6$$

$$y = f(x) = \frac{4}{x}$$

Summary

Important Facts About Functions

- (a) For each x in the domain of f, there is exactly one image f(x) in the range; however, an element in the range can result from more than one x in the domain.
- (b) f is the symbol that we use to denote the function. It is symbolic of the equation that we use to get from an x in the domain to f(x) in the range.
- (c) If y = f(x), then x is called the independent variable or argument of f, and y is called the dependent variable or the value of f at x.

OBJECTIVE 3

3 Find the Domain of a Function Defined by an Equation

Finding the Domain of a Function

Find the domain of each of the following functions:

(a)
$$f(x) = \frac{x+4}{x^2-2x-3}$$

(b)
$$g(x) = x^2 - 9$$

(c)
$$h(x) = \sqrt{3-2x}$$

Finding the Domain of a Function Defined by an Equation

- **1.** Start with the domain as the set of real numbers.
- **2.** If the equation has a denominator, exclude any numbers that give a zero denominator.
- **3.** If the equation has a radical of even index, exclude any numbers that cause the expression inside the radical to be negative.

Finding the Domain in an Application

A rectangular garden has a perimeter of 100 feet. Express the area A of the garden as a function of the width w. Find the domain.

A

OBJECTIVE 4

Form the Sum, Difference, Product, and Quotient of Two Functions

If f and g are functions:

The sum f + g is the function defined by

$$(f+g)(x) = f(x) + g(x)$$

The difference f - g is the function defined by

$$(f-g)(x) = f(x) - g(x)$$

The product $f \cdot g$ is the function defined by

$$(f \cdot g)(x) = f(x) \cdot g(x)$$

The quotient $\frac{f}{g}$ is the function defined by

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$
 $g(x) \neq 0$

EXAMPLE Operations on Functions

For the functions $f(x) = 2x^2 + 3$ $g(x) = 4x^3 + 1$ find the following:

(a)
$$(f + g)(x)$$

(b)
$$(f - g)(x)$$

(c)
$$(f \cdot g)(x)$$

(d)
$$\left(\frac{f}{g}\right)(x)$$

Summary

Function

A relation between two sets of real numbers so that each number x in the first set, the domain, has corresponding to it exactly one number y in the second set.

A set of ordered pairs (x, y) or (x, f(x)) in which no first element is paired with two different second elements.

The range is the set of y values of the function for the x values in the domain.

A function f may be defined implicitly by an equation involving x and y or explicitly by writing y = f(x).

Unspecified domain

If a function f is defined by an equation and no domain is specified, then the domain will be taken to be the largest set of real numbers for which the equation defines a real number.

Function notation

$$y = f(x)$$

f is a symbol for the function.

x is the independent variable or argument.

y is the dependent variable.

f(x) is the value of the function at x, or the image of x.