Section 3.3 Properties of Functions

Determine Even and Odd Functions from a Graph

A function f is **even** if, for every number x in its domain, the number -x is also in the domain and

$$f(-x) = f(x)$$

For an **even** function, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

A function f is **odd** if, for every number x in its domain, the number -x is also in the domain and

$$f(-x) = -f(x)$$

For an **odd** function, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

Theorem

A function is even if and only if its graph is symmetric with respect to the *y*-axis.

A function is odd if and only if its graph is symmetric with respect to the origin.

Determining Even and Odd Functions from the Graph

Determine whether each graph given is an even function, an odd function, or a function that is neither even nor odd.

Identify Even and Odd Functions from the Equation

Identifying Even and Odd Functions

Use a graphing utility to conjecture whether each of the following functions is even, odd, or neither. Verify the conjecture algebraically. Then state whether the graph is symmetric with respect to the *y*-axis or with respect to the origin.

$$f(x) = -3x^4 - x^2 + 2$$

$$g(x) = 5x^3 - 1$$

$$h(x) = 2x^3 - x$$

Use a Graph to Determine Where a Function Is Increasing, Decreasing, or Constant

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function increasing?

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function decreasing?

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function constant?

A function f is **increasing** on an open interval I if, for any choice of x_1 and x_2 in I, with $x_1 < x_2$, we have $f(x_1) < f(x_2)$.

A function f is **decreasing** on an open interval I if, for any choice of x_1 and x_2 in I, with $x_1 < x_2$, we have $f(x_1) > f(x_2)$.

A function f is **constant** on an interval I if, for all choices of x in I, the values f(x) are equal.

Use a Graph to Locate Local Maxima and Local Minima

increasing decreasing

The local maximum is f(c) and occurs at x = c.

decreasing increasing

The local minimum is f(c) and occurs at x = c.

A function f has a **local maximum** at c if there is an open interval I containing c so that, for all $x \neq c$ in I, $f(x) \leq f(c)$. We call f(c) a **local maximum of** f.

A function f has a **local minimum** at c if there is an open interval I containing c so that, for all $x \neq c$ in I, $f(x) \geq f(c)$. We call f(c) a **local minimum of** f.

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

- (a) At what number(s), if any, does f have a local maximum?
- (b) What are the local maxima?

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

- (c) At what number(s), if any, does f have a local minimum?
- (d) What are the local minima?

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

(e) List the intervals on which f is increasing. List the intervals on which f is decreasing.

Use a Graphing Utility to Approximate Local Maxima and Local Minima and to Determine Where a Function Is Increasing or Decreasing

Using a Graphing Utility to Approximate Local Maxima and Minima and to Determine Where a Function Is Increasing or Decreasing

Use a graphing utility to graph $f(x) = 2x^3 - 3x + 1$ for -2 < x < 2. Approximate where f has any local maxima or local minima.

Find the Average Rate of Change of a Function

If a and b, $a \neq b$, are in the domain of a function y = f(x), the average rate of change of f from a to b is defined as

Average rate of change
$$=\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$
 $a \neq b$ (1)

Finding the Average Rate of Change

Find the average rate of change of $f(x) = \frac{1}{2}x^2$:

From 0 to 1

From 0 to 3

From 0 to 5

$$\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$

The Secant Line

$$m_{\text{sec}} = \frac{f(b) - f(a)}{b - a}$$

Theorem

Slope of the Secant Line

The average rate of change of a function from a to b equals the slope of the secant line containing two points (a, f(a)) and (b, f(b)) on its graph.

Finding the Equation of a Secant Line

Suppose that
$$g(x) = -2x^2 + 4x - 3$$
.

- (a) Find the average rate of change of g from -2 to 1.
- (b) Find an equation of the secant line containing (-2, g(-2)) and (1, g(1)).
- (c) Using a graphing utility, draw the graph of g and the secant line obtained in part (b) on the same screen.