Section 3.4 Library of Functions; Piecewise-defined Functions

OBJECTIVE 1

Graph the Functions Listed in the Library of Functions

The Square Root Function

Properties of $f(x) = \sqrt{x}$

- **1.** The domain and the range are the set of nonnegative real numbers.
- 2. The x-intercept of the graph of $f(x) = \sqrt{x}$ is 0. The y-intercept of the graph of $f(x) = \sqrt{x}$ is also 0.
- **3.** The function is neither even nor odd.
- **4.** It is increasing on the interval $(0, \infty)$.
- 5. It has a minimum value of 0 at x = 0.

EXAMPLE

Graphing the Cube Root Function

- (a) Determine whether $f(x) = \sqrt[3]{x}$ is even, odd, or neither. State whether the graph of f is symmetric with respect to the y-axis or symmetric with respect to the origin.
- (b) Determine the intercepts, if any, of the graph of $f(x) = \sqrt[3]{x}$.
- (c) Graph $f(x) = \sqrt[3]{x}$.

x	$y = f(x) = \sqrt[3]{x}$	(x, y)
0	0	(0, 0)
1/8	1/2	$\left(\frac{1}{8},\frac{1}{2}\right)$
1	1	(1, 1)
2	$\sqrt[3]{2} \approx 1.26$	$(2, \sqrt[3]{2})$
8	2	(8, 2)

The Cube Root Function

Properties of $f(x) = \sqrt[3]{x}$

- **1.** The domain and the range are the set of all real numbers.
- 2. The x-intercept of the graph of $f(x) = \sqrt[3]{x}$ is 0. The y-intercept of the graph of $f(x) = \sqrt[3]{x}$ is also 0.
- 3. The graph is symmetric with respect to the origin. The function is odd.
- **4.** It is increasing on the interval $(-\infty, \infty)$.
- 5. It does not have a local minimum or a local maximum.

EXAMPLE Graphing the Absolute Value Function

- (a) Determine whether f(x) = |x| is even, odd, or neither. State whether the graph of f is symmetric with respect to the y-axis or symmetric with respect to the origin.
- (b) Determine the intercepts, if any, of the graph of f(x) = |x|.
- (c) Graph f(x) = |x|.

x	у =	= f(x) = x	(x, y)
0	0		(0, 0)
1	1		(1, 1)
2	2		(2, 2)
3	3		(3, 3)

The Absolute Value Function

Properties of f(x) = |x|

- **1.** The domain is the set of all real numbers. The range of f is $\{y|y \ge 0\}$.
- 2. The x-intercept of the graph of f(x) = |x| is 0. The y-intercept of the graph of f(x) = |x| is also 0.
- **3.** The graph is symmetric with respect to the y-axis. The function is even.
- **4.** It is decreasing on the interval $(-\infty, 0)$. It is increasing on the interval $(0, \infty)$.
- 5. It has a local minimum of 0 at x = 0.

Constant Function

$$f(x) = b$$
, b is a real number

Constant Function

Identity Function

$$f(x) = x$$

Identity Function

Square Function

$$f(x) = x^2$$

Square Function

Cube Function

$$f(x) = x^3$$

Cube Function

Square Root Function

$$f(x) = \sqrt{x}$$

Square Root Function

Cube Root Function

$$f(x) = \sqrt[3]{x}$$

Cube Root Function

Reciprocal Function

$$f(x) = \frac{1}{x}$$

Reciprocal Function

Absolute Value Function

$$f(x) = |x|$$

Absolute Value Function

Greatest Integer Function

 $f(x) = int(x)^* = greatest integer less than or equal to x$

X	y = f(x) $= int(x)$	(x, y)
-1	-1	(-1, -1)
$-\frac{1}{2}$	-1	$\left(-\frac{1}{2},-1\right)$
$-\frac{1}{4}$	-1	$\left(-\frac{1}{4},-1\right)$
0	0	(0, 0)
$\frac{1}{4}$	0	$\left(\frac{1}{4},0\right)$
1/2	0	$\left(\frac{1}{2},0\right)$
3 4	0	$\left(\frac{3}{4},0\right)$

Greatest Integer Function

Greatest Integer Function

 $f(x) = int(x)^* = greatest integer less than or equal to x$

$$f(x) = int(x)$$

OBJECTIVE 2

Graph Piecewise-defined Functions

EXAMPLE

Analyzing a Piecewise-defined Function

The function f is defined as

$$f(x) = \begin{cases} x^2 & \text{if } x < 0\\ 2 & \text{if } x = 0\\ x + 2 & \text{if } x > 0 \end{cases}$$

- (a) Find f(-2), f(0), and f(3).
- (b) Determine the domain of f.

(c) Graph f.

- (d) Use the graph to find the range of f.
- (e) Is f continuous on its domain?

EXAMPLE Cost of Electricity

In May 2006, Commonwealth Edison Company supplied electricity to residences for a monthly customer charge of \$7.58 plus 8.275¢ per kilowatt-hour (kWhr) for the first 400 kWhr supplied in the month and 6.208¢ per kWhr for all usage over 400 kWhr in the month.

- (a) What is the charge for using 300 kWhr in a month?
- (b) What is the charge for using 700 kWhr in a month?
- (c) If C is the monthly charge for x kWhr, develop a model relating the monthly charge and kilowatt-hours used. That is, express C as a function of x.