Section 4.2 Building Linear Models from Data

J Draw and Interpret Scatter Diagrams

EXAMPLE Drawing and Interpreting a Scatter Diagram

Team	On-Base Percentage, <i>x</i>	Runs Scored, y	(<i>x, y</i>)
Atlanta	33.7	849	(33.7, 849)
St. Louis	33.7	781	(33.7, 781)
Colorado	34.1	813	(34.1, 813)
Houston	33.2	735	(33.2, 735)
Philadelphia	34.7	865	(34.7, 865)
San Francisco	32.4	746	(32.4, 746)
Pittsburgh	32.7	691	(32.7, 691)
Florida	33.1	758	(33.1, 758)
Chicago Cubs	31.9	716	(31.9, 716)
Arizona	33.1	773	(33.1, 773)
Milwaukee	32.7	730	(32.7, 730)
Washington	33.8	746	(33.8, 746)
Cincinnati	33.6	749	(33.6, 749)
San Diego	33.2	731	(33.2, 731)
NY Mets	33.4	834	(33.4, 834)
Los Angeles	34.8	820	(34.8, 820)

- (a) Draw a scatter
 diagram of the data,
 treating on-base
 percentage as the
 independent variable.
- (b) Use a graphing utility to draw a scatter diagram.
- (c) Describe what happens to runs scored as the on-base percentage increases.

2 Distinguish between Linear and Nonlinear Relations

(a) Linear y = mx + b, m > 0

(b) Linear y = mx + b, m < 0

(e) Nonlinear

Distinguishing between Linear and Nonlinear Relations Determine whether the relationship between the two variables is linear or nonlinear.

Distinguishing between Linear and Nonlinear Relations Determine whether the relationship between the two variables is linear or nonlinear.

EXAMPLE Finding a Model for Linearly Related Data

Team	On-Base Percentage, <i>x</i>	Runs Scored, y	(<i>x, y</i>)
Atlanta	33.7	849	(33.7, 849)
St. Louis	33.7	781	(33.7, 781)
Colorado	34.1	813	(34.1, 813)
Houston	33.2	735	(33.2, 735)
Philadelphia	34.7	865	(34.7, 865)
San Francisco	32.4	746	(32.4, 746)
Pittsburgh	32.7	691	(32.7, 691)
Florida	33.1	758	(33.1, 758)
Chicago Cubs	31.9	716	(31.9, 716)
Arizona	33.1	773	(33.1, 773)
Milwaukee	32.7	730	(32.7, 730)
Washington	33.8	746	(33.8, 746)
Cincinnati	33.6	749	(33.6, 749)
San Diego	33.2	731	(33.2, 731)
NY Mets	33.4	834	(33.4, 834)
Los Angeles	34.8	820	(34.8, 820)

(a)Select two points and find an equation of the line containing the points.

(b) Graph the line on the scatter diagram obtained in the previous example.

3 Use a Graphing Utility to Find the Line of Best Fit

EXAMPLE Finding a Model for Linearly Related Data

Team	On-Base Percentage, <i>x</i>	Runs Scored, y	(<i>x, y</i>)
Atlanta	33.7	849	(33.7, 849)
St. Louis	33.7	781	(33.7, 781)
Colorado	34.1	813	(34.1, 813)
Houston	33.2	735	(33.2, 735)
Philadelphia	34.7	865	(34.7, 865)
San Francisco	32.4	746	(32.4, 746)
Pittsburgh	32.7	691	(32.7, 691)
Florida	33.1	758	(33.1, 758)
Chicago Cubs	31.9	716	(31.9, 716)
Arizona	33.1	773	(33.1, 773)
Milwaukee	32.7	730	(32.7, 730)
Washington	33.8	746	(33.8, 746)
Cincinnati	33.6	749	(33.6, 749)
San Diego	33.2	731	(33.2, 731)
NY Mets	33.4	834	(33.4, 834)
Los Angeles	34.8	820	(34.8, 820)

- (a) Use a graphing utility to find the line of best fit that models the relation between on-base percentage and runs scored.
- (b) Graph the line of best fit on the scatter diagram obtained in the previous example.
- (c) Interpret the slope.
- (d) Use the line of best fit to predict the number of runs a team will score if their on-base percentage is 33.5.