Section 4.3

Quadratic Functions and Their Properties

Quadratic Functions

DEFINITION

A quadratic function is a function of the form

$$f(x) = ax^2 + bx + c$$

where a, b, and c are real numbers and $a \neq 0$. The domain of a quadratic function consists of all real numbers.

suppose that Texas Instruments collects the data shown in Table 1, which relate the number of calculators sold at the price p (in dollars) per calculator. Since the price of a product determines the quantity that will be purchased, we treat price as the independent variable. The relationship between the number x of calculators sold and the price p per calculator may be approximated by the linear equation

$$x = 21,000 - 150p$$

Then the revenue R derived from selling x calculators at the price p per calculator is equal to the unit selling price p of the product times the number x of units actually sold.

A second situation in which a quadratic function appears involves the motion of a projectile. Based on Newton's second law of motion (force equals mass times acceleration, F = ma), it can be shown that, ignoring air resistance, the path of a projectile propelled upward at an inclination to the horizontal is the graph of a quadratic function. See Figure 2 for an illustration. Later in this section we shall analyze the path of a projectile.

Path of a cannonball

Graph a Quadratic Function Using Transformations

$$f(x) = ax^2 \text{ for } a < 0.$$

Graphs of a quadratic function, $f(x) = ax^2 + bx + c, a \neq 0$

Graphing a Quadratic Function Using Transformations

Graph the function $f(x) = -2x^2 + 6x + 2$ Find the vertex and axis of symmetry.

If
$$h = -\frac{b}{2a}$$
 and $k = \frac{4ac - b^2}{4a}$, then

$$f(x) = ax^2 + bx + c = a(x - h)^2 + k$$

2 Identify the Vertex and Axis of Symmetry of a Quadratic Function

Properties of the Graph of a Quadratic Function

$$f(x) = ax^{2} + bx + c \qquad a \neq 0$$

Vertex = $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$ Axis of symmetry: the line $x = -\frac{b}{2a}$

Parabola opens up if a > 0; the vertex is a minimum point. Parabola opens down if a < 0; the vertex is a maximum point.

Locating the Vertex without Graphing

Without graphing, locate the vertex and axis of symmetry of the parabola defined by $f(x) = 3x^2 + 12x - 5$. Does it open up or down?

3 Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts

The x-Intercepts of a Quadratic Function

- 1. If the discriminant $b^2 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts so it crosses the x-axis in two places.
- 2. If the discriminant $b^2 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one x-intercept so it touches the x-axis at its vertex.
- 3. If the discriminant $b^2 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept so it does not cross or touch the x-axis.

$$f(x) = ax^2 + bx + c, a > 0$$

EXAMPLE How to Graph a Quadratic Function by Hand Using Its Properties

Graph $f(x) = 3x^2 + 12x - 5$ using its properties.

Determine the domain and the range of f.

Determine where f is increasing and where is is decreasing.

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Graph $x^2 + 4x + 4$ by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, y-intercept, and x-intercepts, if any.

- (b) Determine the domain and the range of f.
- (c) Determine where f is increasing and where it is decreasing

Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Graph $-x^2 + 4x + 7$ by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, *y*-intercept, and *x*-intercepts, if any.

- (b) Determine the domain and the range of f.
- (c) Determine where f is increasing and where it is decreasing.

SUMMARY Steps for Graphing a Quadratic Function $f(x) = ax^2 + bx + c$, $a \neq 0$, by Hand

Option 1

STEP 1: Complete the square in x to write the quadratic function in the form $f(x) = a(x - h)^2 + k$. **STEP 2:** Graph the function in stages using transformations.

Option 2

STEP 1: Determine whether the graph of f opens up or down.

STEP 2: Determine the vertex
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$
 and the axis of symmetry, $x = -\frac{b}{2a}$.

STEP 3: Determine the y-intercept, f(0). Determine the x-intercept(s), if any.

- (a) If $b^2 4ac > 0$, then the graph of the quadratic function has two x-intercepts, which are found by solving the equation $ax^2 + bx + c = 0$.
- (b) If $b^2 4ac = 0$, the vertex is the *x*-intercept.
- (c) If $b^2 4ac < 0$, there are no x-intercepts.

STEP 4: Determine an additional point by using the *y*-intercept and the axis of symmetry. Plot the points and draw the graph.

Given the vertex (h, k) and one additional point on the graph of a quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$, we can use

$$f(x) = a(x - h)^2 + k$$

(3)

to obtain the quadratic function.

Finding the Quadratic Function Given Its Vertex and One Other Point

Determine the quadratic function whose vertex is (-2, -5) and whose y intercept is -1.

4 Find the Maximum or Minimum Value of a Quadratic Function

Finding the Maximum or Minimum Value of a Quadratic Function

Determine whether the quadratic function $f(x) = -x^2 + 4x + 5$ has a maximum or minimum value.

Then find the maximum or minimum value.

Vertex =
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$