Section 4.3
Quadratic Functions and Their Properties
Quadratic Functions

DEFINITION

A **quadratic function** is a function of the form

\[f(x) = ax^2 + bx + c \]

where \(a, b, \) and \(c \) are real numbers and \(a \neq 0 \). The domain of a quadratic function consists of all real numbers.
suppose that Texas Instruments collects the data shown in Table 1, which relate the number of calculators sold at the price \(p \) (in dollars) per calculator. Since the price of a product determines the quantity that will be purchased, we treat price as the independent variable. The relationship between the number \(x \) of calculators sold and the price \(p \) per calculator may be approximated by the linear equation

\[
x = 21,000 - 150p
\]

<table>
<thead>
<tr>
<th>Price per Calculator, (p) (Dollars)</th>
<th>Number of Calculators, (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>12,000</td>
</tr>
<tr>
<td>65</td>
<td>11,250</td>
</tr>
<tr>
<td>70</td>
<td>10,500</td>
</tr>
<tr>
<td>75</td>
<td>9,750</td>
</tr>
<tr>
<td>80</td>
<td>9,000</td>
</tr>
<tr>
<td>85</td>
<td>8,250</td>
</tr>
<tr>
<td>90</td>
<td>7,500</td>
</tr>
</tbody>
</table>

Then the revenue \(R \) derived from selling \(x \) calculators at the price \(p \) per calculator is equal to the unit selling price \(p \) of the product times the number \(x \) of units actually sold.
A second situation in which a quadratic function appears involves the motion of a projectile. Based on Newton’s second law of motion (force equals mass times acceleration, $F = ma$), it can be shown that, ignoring air resistance, the path of a projectile propelled upward at an inclination to the horizontal is the graph of a quadratic function. See Figure 2 for an illustration. Later in this section we shall analyze the path of a projectile.
OBJECTIVE 1

1. Graph a Quadratic Function Using Transformations
\[f(x) = ax^2, \ a > 0, \text{ for } a = 1, \ a = \frac{1}{2}, \text{ and } a = 3. \]
$f(x) = ax^2$ for $a < 0$.
Graphs of a quadratic function,
\[f(x) = ax^2 + bx + c, \quad a \neq 0 \]

- **Axis of symmetry**
- **Vertex is highest point**

(a) **Opens up**
- Vertex is lowest point
- \(a > 0 \)

(b) **Opens down**
- Axis of symmetry
- \(a < 0 \)
Graphing a Quadratic Function Using Transformations

Graph the function $f(x) = -2x^2 + 6x + 2$

Find the vertex and axis of symmetry.
If \(h = -\frac{b}{2a} \) and \(k = \frac{4ac - b^2}{4a} \), then

\[
f(x) = ax^2 + bx + c = a(x - h)^2 + k
\]
OBJECTIVE 2

Identify the Vertex and Axis of Symmetry of a Quadratic Function
Properties of the Graph of a Quadratic Function

\[f(x) = ax^2 + bx + c \quad a \neq 0 \]

Vertex \(= \left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right) \right) \)
Axis of symmetry: the line \(x = -\frac{b}{2a} \)

Parabola opens up if \(a > 0 \); the vertex is a minimum point.
Parabola opens down if \(a < 0 \); the vertex is a maximum point.
Without graphing, locate the vertex and axis of symmetry of the parabola defined by \(f(x) = 3x^2 + 12x - 5 \). Does it open up or down?

\[
\text{Vertex} = \left(-\frac{b}{2a}, f\left(-\frac{b}{2a} \right) \right)
\]
OBJECTIVE 3

3. Graph a Quadratic Function Using Its Vertex, Axis, and Intercepts
The x-Intercepts of a Quadratic Function

1. If the discriminant $b^2 - 4ac > 0$, the graph of $f(x) = ax^2 + bx + c$ has two distinct x-intercepts so it crosses the x-axis in two places.

2. If the discriminant $b^2 - 4ac = 0$, the graph of $f(x) = ax^2 + bx + c$ has one x-intercept so it touches the x-axis at its vertex.

3. If the discriminant $b^2 - 4ac < 0$, the graph of $f(x) = ax^2 + bx + c$ has no x-intercept so it does not cross or touch the x-axis.
\[f(x) = ax^2 + bx + c, \ a > 0 \]

(a) \[b^2 - 4ac > 0 \]
Two \(x \)-intercepts

(b) \[b^2 - 4ac = 0 \]
One \(x \)-intercept

(c) \[b^2 - 4ac < 0 \]
No \(x \)-intercepts
Graph \(f(x) = 3x^2 + 12x - 5 \) using its properties.
Determine the domain and the range of \(f \).
Determine where \(f \) is increasing and where it is decreasing.
Graphing a Quadratic Function Using Its Vertex, Axis, and Intercepts

(a) Graph $x^2 + 4x + 4$ by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, y-intercept, and x-intercepts, if any.
(b) Determine the domain and the range of f.
(c) Determine where f is increasing and where it is decreasing
(a) Graph \(- x^2 + 4x + 7\) by determining whether the graph opens up or down and by finding its vertex, axis of symmetry, \(y\)-intercept, and \(x\)-intercepts, if any.

(b) Determine the domain and the range of \(f\).

(c) Determine where \(f\) is increasing and where it is decreasing.
SUMMARY Steps for Graphing a Quadratic Function $f(x) = ax^2 + bx + c, a \neq 0$, by Hand

Option 1

Step 1: Complete the square in x to write the quadratic function in the form $f(x) = a(x - h)^2 + k$.

Step 2: Graph the function in stages using transformations.

Option 2

Step 1: Determine whether the graph of f opens up or down.

Step 2: Determine the vertex \(\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right) \) and the axis of symmetry, $x = -\frac{b}{2a}$.

Step 3: Determine the y-intercept, $f(0)$. Determine the x-intercept(s), if any.

(a) If $b^2 - 4ac > 0$, then the graph of the quadratic function has two x-intercepts, which are found by solving the equation $ax^2 + bx + c = 0$.

(b) If $b^2 - 4ac = 0$, the vertex is the x-intercept.

(c) If $b^2 - 4ac < 0$, there are no x-intercepts.

Step 4: Determine an additional point by using the y-intercept and the axis of symmetry. Plot the points and draw the graph.
Given the vertex \((h, k)\) and one additional point on the graph of a quadratic function \(f(x) = ax^2 + bx + c, a \neq 0\), we can use

\[
\begin{align*}
 f(x) &= a(x - h)^2 + k
\end{align*}
\]

(3)

to obtain the quadratic function.
EXAMPLE

Finding the Quadratic Function Given Its Vertex and One Other Point

Determine the quadratic function whose vertex is (-2, -5) and whose y intercept is – 1.
OBJECTIVE 4

4) Find the Maximum or Minimum Value of a Quadratic Function
Determine whether the quadratic function
\[f(x) = -x^2 + 4x + 5 \]
has a maximum or minimum value. Then find the maximum or minimum value.