Section 5.2 Properties of Rational Functions

A rational function is a function of the form

$$R(x) = \frac{p(x)}{q(x)}$$

where p and q are polynomial functions and q is not the zero polynomial.

The domain is the set of all real numbers except those for which the denominator q is 0.

OBJECTIVE 1

Find the Domain of a Rational Function

Finding the Domain of a Rational Function

Find the domain of the following rational functions:

(a)
$$R(x) = \frac{x^2 - 4}{x + 4}$$

(b)
$$R(x) = \frac{x+6}{x^2+8x+12}$$

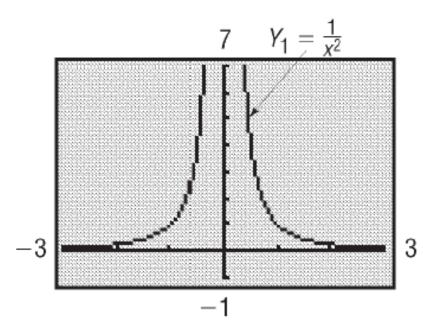
(c)
$$R(x) = \frac{x-5}{x^2+2}$$

(d)
$$R(x) = \frac{x^2 - 9}{3}$$

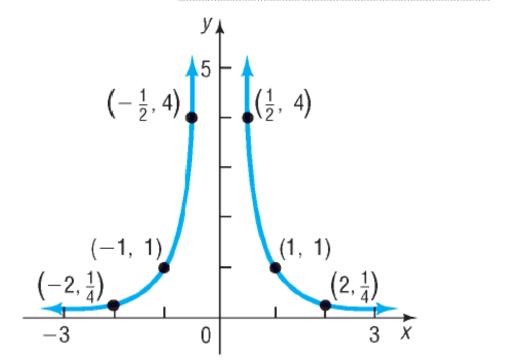
(d)
$$R(x) = \frac{x^2 - 9}{3}$$
 (e) $R(x) = \frac{x^2 - 4}{x + 2}$

Graphing $y = \frac{1}{x^2}$

Analyze the graph of $H(x) = \frac{1}{x^2}$.



.1 .01 .001 1E-4 10 100 1000	100 10000 1E6 1EB .01 1E-4 1E-6		
--	---	--	--



Using Transformations to Graph a Rational Function

Graph the rational function:
$$R(x) = \frac{1}{(x-3)^2} + 2$$

Asymptotes

Exploration

- (a) Using a graphing utility and the TABLE feature, evaluate the function $H(x) = \frac{1}{(x-2)^2} + 1$ at x = 10, 100, 1000, and 10,000. What happens to the values of H as x becomes unbounded in the positive direction, symbolized by $\lim_{x\to\infty} H(x)$?
- (b) Evaluate H at x = -10, -100, -1000, and -10,000. What happens to the values of H as x becomes unbounded in the negative direction, symbolized by $\lim_{x \to -\infty} H(x)$?
- (c) Evaluate H at x = 1.5, 1.9, 1.99, 1.999, and 1.9999. What happens to the values of H as x approaches 2, x < 2, symbolized by $\lim_{x \to 2^-} H(x)$?
- (d) Evaluate H at x=2.5, 2.1, 2.01, 2.001, and 2.0001. What happens to the values of H as x approaches 2, x>2, symbolized by $\lim_{x\to 2^+} H(x)$?

X	Y1	
-10 -100 -1000 -10000	1,0069 1,0001 1 1	
Y181/1	(X-2)	² +1

Asymptotes

Exploration

- (a) Using a graphing utility and the TABLE feature, evaluate the function $H(x) = \frac{1}{(x-2)^2} + 1$ at x = 10, 100, 1000, and 10,000. What happens to the values of H as x becomes unbounded in the positive direction, symbolized by $\lim_{x\to\infty} H(x)$?
- (b) Evaluate H at x = -10, -100, -1000, and -10,000. What happens to the values of H as x becomes unbounded in the negative direction, symbolized by $\lim_{x \to -\infty} H(x)$?
- (c) Evaluate H at x=1.5, 1.9, 1.99, 1.999, and 1.9999. What happens to the values of H as x=1.5 approaches 2, x<2, symbolized by $\lim_{x\to 2^-} H(x)$?
- (d) Evaluate H at x=2.5, 2.1, 2.01, 2.001, and 2.0001. What happens to the values of H as x approaches 2, x>2, symbolized by $\lim_{x\to 2^+} H(x)$?

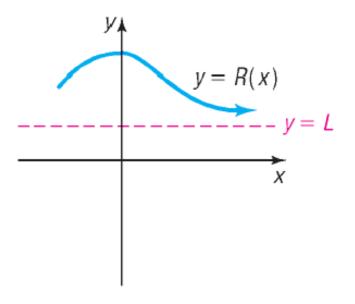
2.5 2.1 2.01 2.001 2.0001	5 101 10001 1E6 1E8	
L E1 2	/U_2\	24.1

X	Y1	
1.5 1.9 1.99 1.999 1.9999	5 101 10001 1E6 1E8	
V1817	(X-2)	<u> </u> 2+1

Let R denote a function:

If, as $x \to -\infty$ or as $x \to \infty$, the values of R(x) approach some fixed number L, then the line y = L is a **horizontal asymptote** of the graph of R.

If, as x approaches some number c, the values $|R(x)| \to \infty$, then the line x = c is a **vertical asymptote** of the graph of R. The graph of R never intersects a vertical asymptote.



(a) End behavior: As $x \to \infty$, the values of R(x) approach $L[\lim_{x \to \infty} R(x) = L]$. That is, the points on the graph of R are getting closer to the line y = L; y = L is a horizontal asymptote.

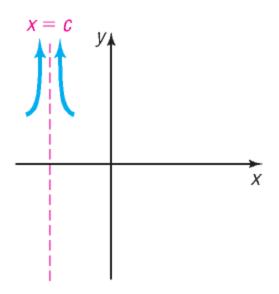


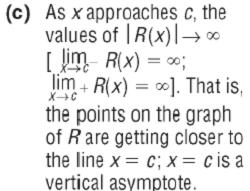
(b) End behavior:
As x → -∞, the values
of R(x) approach L
[lim R(x) = L]. That is, the points on the graph of R are getting closer to the line y = L; y = L is a horizontal asymptote.

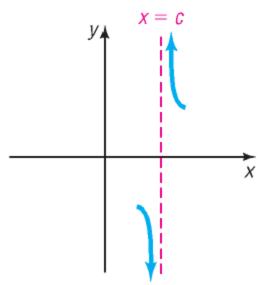
Let R denote a function:

If, as $x \to -\infty$ or as $x \to \infty$, the values of R(x) approach some fixed number L, then the line y = L is a **horizontal asymptote** of the graph of R.

If, as x approaches some number c, the values $|R(x)| \to \infty$, then the line x = c is a **vertical asymptote** of the graph of R. The graph of R never intersects a vertical asymptote.

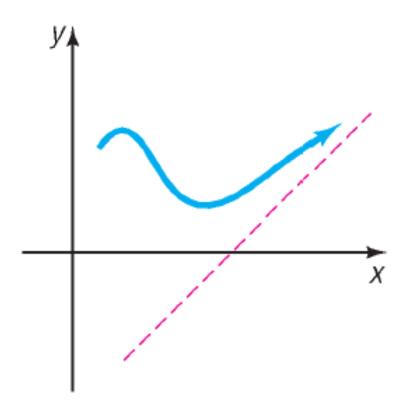






(d) As x approaches c, the values of $|R(x)| \to \infty$ [$\lim_{x \to c^-} R(x) = -\infty$; $\lim_{x \to c^+} R(x) = \infty$]. That is, the points on the graph of R are getting closer to the line x = c; x = c is a vertical asymptote.

Oblique asymptote



OBJECTIVE 2

Find the Vertical Asymptotes of a Rational Function

Theorem

Locating Vertical Asymptotes

A rational function $R(x) = \frac{p(x)}{q(x)}$, in lowest terms, will have a vertical asymptote x = r if r is a real zero of the denominator q. That is, if x - r is a factor of the denominator q of a rational function $R(x) = \frac{p(x)}{q(x)}$, in lowest terms, then R will have the vertical asymptote x = r.

Finding Vertical Asymptotes

Find the vertical asymptotes, if any, of the graph of each rational function.

$$R(x) = \frac{5x^2}{3+x}$$

$$H(x) = \frac{x-3}{(x+2)(x-2)}$$

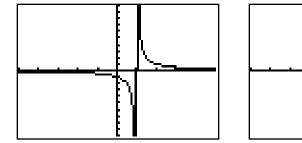
$$F(x) = \frac{x-1}{x^2 + 5x + 4}$$

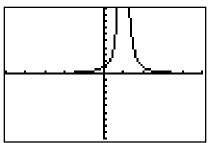
$$G(x) = \frac{x^2 + 3x + 2}{x^2 - 4}$$

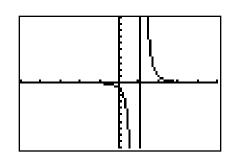
Exploration

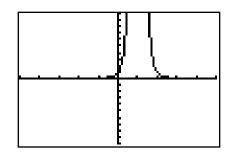
Graph each of the following rational functions:

$$R(x) = \frac{1}{x-1}$$
 $R(x) = \frac{1}{(x-1)^2}$ $R(x) = \frac{1}{(x-1)^3}$ $R(x) = \frac{1}{(x-1)^4}$









Each has the vertical asymptote x = 1. What happens to the value of R(x) as x approaches 1 from the right side of the vertical asymptote; that is, what is $\lim_{x \to 1^+} R(x)$? What happens to the value of R(x) as x approaches 1 from the left side of the vertical asymptote; that is, what is $\lim_{x \to 1^-} R(x)$? How does the multiplicity of the zero in the denominator affect the graph of R?

OBJECTIVE 3

Find the Horizontal or Oblique Asymptotes of a Rational Function

Theorem

If a rational function is proper, the line y = 0 is a horizontal asymptote of its graph.

Finding Horizontal Asymptotes

Find the horizontal asymptotes, if any, of the graph of

$$R(x) = \frac{x+3}{x^2+2x+5}$$

If a rational function $R(x) = \frac{p(x)}{q(x)}$ is **improper**,

$$R(x) = \frac{p(x)}{q(x)} = f(x) + \frac{r(x)}{q(x)}$$

- 1. If f(x) = b, a constant, then the line y = b is a horizontal asymptote of the graph of R.
- 2. If f(x) = ax + b, $a \ne 0$, then the line y = ax + b is an oblique asymptote of the graph of R.
- **3.** In all other cases, the graph of R approaches the graph of f, and there are no horizontal or oblique asymptotes.

Finding Horizontal or Oblique Asymptotes

Find the horizontal or oblique asymptotes, if any, of the graph of

$$H(x) = \frac{2x^2 + 7x - 1}{x^2 + 2}$$

Finding Horizontal or Oblique Asymptotes

Find the horizontal or oblique asymptotes, if any, of the graph of

$$R(x) = \frac{5x^6 - 4x^3 + 3}{2x^6 - 5x^5 + 8x^4 - 7x^3 + 2}$$

Finding Horizontal or Oblique Asymptotes

Find the horizontal or oblique asymptotes, if any, of the graph of

$$G(x) = \frac{x^2 + 4x + 1}{x - 2}$$

SUMMARY Finding Horizontal and Oblique Asymptotes of a Rational Function R

Consider the rational function

$$R(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

in which the degree of the numerator is n and the degree of the denominator is m.

- 1. If n < m (the degree of the numerator is less than the degree of the denominator), then R is a proper rational function, and the graph of R will have the horizontal asymptote y = 0 (the x-axis).
- 2. If $n \ge m$ (the degree of the numerator is greater than or equal to the degree of the denominator), then R is improper. Here long division is used.
 - (a) If n = m (the degree of the numerator equals the degree of the denominator), the quotient obtained will be the number $\frac{a_n}{b_m}$, and the line $y = \frac{a_n}{b_m}$ is a horizontal asymptote.
 - (b) If n = m + 1 (the degree of the numerator is one more than the degree of the denominator), the quotient obtained is of the form ax + b (a polynomial of degree 1), and the line y = ax + b is an oblique asymptote.
 - (c) If $n \ge m + 2$ (the degree of the numerator is two or more greater than the degree of the denominator), the quotient obtained is a polynomial of degree 2 or higher, and R has neither a horizontal nor an oblique asymptote. In this case, for |x| unbounded, the graph of R will behave like the graph of the quotient.

NOTE The graph of a rational function either has one horizontal or one oblique asymptote or else has no horizontal and no oblique asymptote.