Section 6.3 Exponential Functions

OBJECTIVE 1

1 Evaluate Exponential Functions

Using a Calculator to Evaluate Powers of 2

Using a calculator, evaluate:

(a)
$$2^{1.4}$$

(b)
$$2^{1.41}$$

(b)
$$2^{1.41}$$
 (c) $2^{1.414}$

(d)
$$2^{1.4142}$$

(e)
$$2^{\sqrt{2}}$$

Theorem

Laws of Exponents

If s, t, a, and b are real numbers with a > 0 and b > 0, then

$$a^{s} \cdot a^{t} = a^{s+t} \qquad (a^{s})^{t} = a^{st} \qquad (ab)^{s} = a^{s} \cdot b^{s}$$

$$1^{s} = 1 \qquad a^{-s} = \frac{1}{a^{s}} = \left(\frac{1}{a}\right)^{s} \qquad a^{0} = 1$$

Introduction to Exponential Growth

Let's examine a function f that has the following two properties:

- **1.** The value of f doubles with every 1-unit increase in the independent variable x.
- **2.** The value of f at x = 0 is 5, so f(0) = 5.

Х	f(x)
0	5
1	10
2	20
3	40
4	80

DEFINITION

An exponential function is a function of the form

$$f(x) = Ca^x$$

where a is a positive real number (a > 0) and $a \ne 1$, and $C \ne 0$ is a real number. The domain of f is the set of all real numbers. The base a is the **growth** factor, and because $f(0) = Ca^0 = C$, we call C the **initial value.**

Theorem

For an exponential function $f(x) = C \cdot a^x$, a > 0, $a \ne 1$, if x is any real number, then

$$\frac{f(x+1)}{f(x)} = a \quad \text{or} \quad f(x+1) = af(x)$$

Identifying Linear or Exponential Functions

Determine whether the given function is linear, exponential, or neither. For those that are linear, find a linear function that models the data. For those that are exponential, find an exponential function that models the data.

(a)

Х	у
-1	5
0	2
1	-1
2	-4
3	-7

(b)

х	у
-1	2
0	4
1	7
2	11
3	15

(c)

Х	у	
-1	32	
0	16	
1	8	
2	4	
3	2	

OBJECTIVE 2

2 Graph Exponential Functions

Graphing an Exponential Function

Graph the exponential function: $f(x) = 2^x$

Number of Cellular Phone Subscribers at Year End

Properties of the Exponential Function $f(x) = a^x$, a > 1

- 1. The domain is the set of all real numbers; the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- **3.** The x-axis (y = 0) is a horizontal asymptote as $x \to -\infty$.
- **4.** $f(x) = a^x$, a > 1, is an increasing function and is one-to-one.
- **5.** The graph of f contains the points (0, 1), (1, a), and $\left(-1, \frac{1}{a}\right)$.
- **6.** The graph of f is smooth and continuous, with no corners or gaps.

Graphing an Exponential Function

Graph the exponential function: $f(x) = \left(\frac{1}{2}\right)^x$

Seeing the Concept

Using a graphing utility, simultaneously graph:

(a)
$$Y_1 = 3^x$$
, $Y_2 = \left(\frac{1}{3}\right)^x$

(b)
$$Y_1 = 6^x, Y_2 = \left(\frac{1}{6}\right)^x$$

Properties of the Exponential Function $f(x) = a^x$, 0 < a < 1

- 1. The domain is the set of all real numbers; the range is the set of positive real numbers.
- 2. There are no x-intercepts; the y-intercept is 1.
- 3. The x-axis (y = 0) is a horizontal asymptote as $x \to \infty$.
- **4.** $f(x) = a^x$, 0 < a < 1, is a decreasing function and is one-to-one.
- **5.** The graph of f contains the points (0, 1), (1, a), and $\left(-1, \frac{1}{a}\right)$.
- **6.** The graph of f is smooth and continuous, with no corners or gaps.

Graphing Exponential Functions Using Transformations

Graph $f(x) = 2 \cdot 3^{x+1} - 4$ and determine the domain, range, and horizontal asymptote of f.

OBJECTIVE 3

3 Define the Number e

DEFINITION

The **number** *e* is defined as the number that the expression

$$\left(1+\frac{1}{n}\right)^n$$

approaches as $n \to \infty$.

In calculus, this is expressed using limit notation as

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

n	<u>1</u>	$1 + \frac{1}{n}$	$\left(1+\frac{1}{n}\right)^n$
1	1	2	2
2	0.5	1.5	2.25
5	0.2	1.2	2.48832
10	0.1	1.1	2.59374246
100	0.01	1.01	2.704813829
1,000	0.001	1.001	2.716923932
10,000	0.0001	1.0001	2.718145927
100,000	0.00001	1.00001	2.718268237
1,000,000	0.000001	1.000001	2.718280469
1,000,000,000	10 ⁻⁹	$1 + 10^{-9}$	2.718281827

X	Y1			
-2 -4	.13534 .36788			
o [±]	1 1			
2	2.7183 7.3891			
Y18e^(X)				

Graphing Exponential Functions Using Transformations

Graph $f(x) = -e^{x-2}$ and determine the domain, range, and horizontal asymptote of f.

OBJECTIVE 4

4 Solve Exponential Equations

If $a^u = a^v$, then u = v

EXAMPLE Solving an Exponential Equation

Solve:
$$2^{3x-1} = 32$$

If $a^u = a^v$, then u = v

Solving an Exponential Equation

Solve:
$$e^{2x-1} = \frac{1}{e^{3x}} \cdot (e^{-x})^4$$

If $a^u = a^v$, then u = v

Exponential Probability

Between 9:00 PM and 10:00 PM cars arrive at Burger King's drive-thru at the rate of 12 cars per hour (0.2 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within *t* minutes of 9:00 PM.

$$F(t) = 1 - e^{-0.2t}$$

- (a) Determine the probability that a car will arrive within 5 minutes of 9 PM (that is, before 9:05 PM).
- (b) Determine the probability that a car will arrive within 30 minutes of 9 PM (before 9:30 PM).
- (c) Graph *F* using your graphing utility.
- (d) What value does *F* approach as *t* becomes unbounded in the positive direction?

Summary

Properties of the Exponential Function

$$f(x) = a^x, \quad a > 1$$

Domain: the interval $(-\infty, \infty)$; Range: the interval $(0, \infty)$ *x*-intercepts: none; *y*-intercept: 1

Horizontal asymptote: x-axis (y = 0) as $x \rightarrow -\infty$ Increasing; one-to-one; smooth; continuous

$$f(x) = a^x, \quad 0 < a < 1$$

Domain: the interval $(-\infty, \infty)$; Range: the interval $(0, \infty)$. *x*-intercepts: none; *y*-intercept: 1

Horizontal asymptote: x-axis (y = 0) as $x \to \infty$

Decreasing; one-to-one; smooth; continuous

If
$$a^u = a^v$$
, then $u = v$.