Section 6.3
Exponential Functions
OBJECTIVE 1

1 Evaluate Exponential Functions
Using a Calculator to Evaluate Powers of 2

Using a calculator, evaluate:

(a) \(2^{1.4}\) (b) \(2^{1.41}\) (c) \(2^{1.414}\) (d) \(2^{1.4142}\) (e) \(2^{\sqrt{2}}\)
Theorem

Laws of Exponents

If s, t, a, and b are real numbers with $a > 0$ and $b > 0$, then

\[
\begin{align*}
 a^s \cdot a^t &= a^{s+t} \\
 (a^s)^t &= a^{st} \\
 (ab)^s &= a^s \cdot b^s \\
 1^s &= 1 \\
 a^{-s} &= \frac{1}{a^s} = \left(\frac{1}{a}\right)^s \\
 a^0 &= 1
\end{align*}
\]
Introduction to Exponential Growth

Let’s examine a function f that has the following two properties:

1. The value of f doubles with every 1-unit increase in the independent variable x.
2. The value of f at $x = 0$ is 5, so $f(0) = 5$.

<table>
<thead>
<tr>
<th>x</th>
<th>$f(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>80</td>
</tr>
</tbody>
</table>
DEFINITION

An *exponential function* is a function of the form

\[f(x) = Ca^x \]

where \(a\) is a positive real number \((a > 0)\) and \(a \neq 1\), and \(C \neq 0\) is a real number. The domain of \(f\) is the set of all real numbers. The base \(a\) is the **growth factor**, and because \(f(0) = Ca^0 = C\), we call \(C\) the **initial value**.
Theorem

For an exponential function \(f(x) = C \cdot a^x, a > 0, a \neq 1 \), if \(x \) is any real number, then

\[
\frac{f(x + 1)}{f(x)} = a \quad \text{or} \quad f(x + 1) = af(x)
\]
EXAMPLE Identifying Linear or Exponential Functions

Determine whether the given function is linear, exponential, or neither. For those that are linear, find a linear function that models the data. For those that are exponential, find an exponential function that models the data.

(a)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>−1</td>
</tr>
<tr>
<td>2</td>
<td>−4</td>
</tr>
<tr>
<td>3</td>
<td>−7</td>
</tr>
</tbody>
</table>

(b)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
</tbody>
</table>

(c)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>−1</td>
<td>32</td>
</tr>
<tr>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>
OBJECTIVE 2

2 Graph Exponential Functions
Graph the exponential function: \(f(x) = 2^x \)
Properties of the Exponential Function $f(x) = a^x, a > 1$

1. The domain is the set of all real numbers; the range is the set of positive real numbers.
2. There are no x-intercepts; the y-intercept is 1.
3. The x-axis ($y = 0$) is a horizontal asymptote as $x \to -\infty$.
4. $f(x) = a^x, a > 1$, is an increasing function and is one-to-one.
5. The graph of f contains the points $(0, 1), (1, a)$, and $\left(-1, \frac{1}{a}\right)$.
6. The graph of f is smooth and continuous, with no corners or gaps.
Graph the exponential function: \(f(x) = \left(\frac{1}{2} \right)^x \)
Seeing the Concept

Using a graphing utility, simultaneously graph:

(a) \(Y_1 = 3^x, \ Y_2 = \left(\frac{1}{3} \right)^x \)

(b) \(Y_1 = 6^x, \ Y_2 = \left(\frac{1}{6} \right)^x \)
The graph shows two exponential functions:

1. $y_1 = \left(\frac{1}{3}\right)^x$
2. $y_2 = \left(\frac{1}{6}\right)^x$

The points on the graph include:

- $(-1, 6)$
- $(0, 1)$
- $(1, \frac{1}{3})$
- $(1, \frac{1}{6})$

The graph also includes a horizontal line at $y = 0$. The graph is split into three sections, each showing the behavior of y_1 and y_2 for different ranges of x.
Properties of the Exponential Function $f(x) = a^x$, $0 < a < 1$

1. The domain is the set of all real numbers; the range is the set of positive real numbers.
2. There are no x-intercepts; the y-intercept is 1.
3. The x-axis ($y = 0$) is a horizontal asymptote as $x \to \infty$.
4. $f(x) = a^x$, $0 < a < 1$, is a decreasing function and is one-to-one.
5. The graph of f contains the points $(0, 1)$, $(1, a)$, and $\left(-1, \frac{1}{a}\right)$.
6. The graph of f is smooth and continuous, with no corners or gaps.
Graph $f(x) = 2 \cdot 3^{x+1} - 4$ and determine the domain, range, and horizontal asymptote of f.
OBJECTIVE 3

3 Define the Number e
The **number** e is defined as the number that the expression

\[
\left(1 + \frac{1}{n}\right)^n
\]

approaches as $n \to \infty$.

In calculus, this is expressed using limit notation as

\[
e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n
\]
<table>
<thead>
<tr>
<th>n</th>
<th>$\frac{1}{n}$</th>
<th>$1 + \frac{1}{n}$</th>
<th>$\left(1 + \frac{1}{n}\right)^n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>1.5</td>
<td>2.25</td>
</tr>
<tr>
<td>5</td>
<td>0.2</td>
<td>1.2</td>
<td>2.48832</td>
</tr>
<tr>
<td>10</td>
<td>0.1</td>
<td>1.1</td>
<td>2.59374246</td>
</tr>
<tr>
<td>100</td>
<td>0.01</td>
<td>1.01</td>
<td>2.704813829</td>
</tr>
<tr>
<td>1,000</td>
<td>0.001</td>
<td>1.001</td>
<td>2.716923932</td>
</tr>
<tr>
<td>10,000</td>
<td>0.0001</td>
<td>1.0001</td>
<td>2.718145927</td>
</tr>
<tr>
<td>100,000</td>
<td>0.00001</td>
<td>1.00001</td>
<td>2.718268237</td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.000001</td>
<td>1.000001</td>
<td>2.718280469</td>
</tr>
<tr>
<td>1,000,000,000</td>
<td>10^{-9}</td>
<td>$1 + 10^{-9}$</td>
<td>2.718281827</td>
</tr>
</tbody>
</table>
\[y = e^x \]

- Table:
 - \(x = -2 \) : \(y = 0.13534 \)
 - \(x = -1 \) : \(y = 0.36788 \)
 - \(x = 0 \) : \(y = 1 \)
 - \(x = 1 \) : \(y = 2.7183 \)
 - \(x = 2 \) : \(y = 7.3891 \)

- Graphs:
 - \(Y_1 = e^x \)
 - \(Y_2 = e^x \)
 - \(Y_3 = 3^x \)
 - \(Y_4 = 2^x \)
Graphing Exponential Functions Using Transformations

Graph \(f(x) = -e^{x-2} \) and determine the domain, range, and horizontal asymptote of \(f \).
OBJECTIVE 4

4 Solve Exponential Equations
If \(a^u = a^v \), then \(u = v \)
EXAMPLE

Solving an Exponential Equation

Solve: \(2^{3x-1} = 32 \)

If \(a^u = a^v \), then \(u = v \)
EXAMPLE Solving an Exponential Equation

Solve: \(e^{2x-1} = \frac{1}{e^{3x}} \cdot \left(e^{-x} \right)^4 \)

If \(a^u = a^v \), then \(u = v \)
EXAMPLE Exponential Probability

Between 9:00 PM and 10:00 PM cars arrive at Burger King’s drive-thru at the rate of 12 cars per hour (0.2 car per minute). The following formula from statistics can be used to determine the probability that a car will arrive within t minutes of 9:00 PM.

$$F(t) = 1 - e^{-0.2t}$$

(a) Determine the probability that a car will arrive within 5 minutes of 9 PM (that is, before 9:05 PM).

(b) Determine the probability that a car will arrive within 30 minutes of 9 PM (before 9:30 PM).

(c) Graph F using your graphing utility.

(d) What value does F approach as t becomes unbounded in the positive direction?
Summary

Properties of the Exponential Function

\[f(x) = a^x, \quad a > 1 \]

Domain: the interval \((-\infty, \infty)\); Range: the interval \((0, \infty)\)
\(x\)-intercepts: none; \(y\)-intercept: 1
Horizontal asymptote: \(x\)-axis \((y = 0)\) as \(x \to -\infty\)
Increasing: one-to-one; smooth; continuous

\[f(x) = a^x, \quad 0 < a < 1 \]

Domain: the interval \((-\infty, \infty)\); Range: the interval \((0, \infty)\).
\(x\)-intercepts: none; \(y\)-intercept: 1
Horizontal asymptote: \(x\)-axis \((y = 0)\) as \(x \to \infty\)
Decreasing: one-to-one; smooth; continuous

If \(a^u = a^v\), then \(u = v\).