Section 6.4 Logarithmic Functions

DEFINITION

The logarithmic function to the base a,

where a > 0 and $a \ne 1$, is denoted by $y = \log_a x$ (read as "y is the logarithm to the base a of x") and is defined by

$$y = \log_a x$$
 if and only if $x = a^y$

The domain of the logarithmic function $y = \log_a x$ is x > 0.

Relating Logarithms to Exponents

(a) If $y = \log_3 x$, then $x = 3^y$.

For example, $4 = \log_3 81$ is equivalent to $81 = 3^4$.

(b) If $y = \log_5 x$, then $x = 5^y$.

For example, $-1 = \log_5\left(\frac{1}{5}\right)$ is equivalent to $\frac{1}{5} = 5^{-1}$.

1 Change Exponential Expressions to Logarithmic Expressions and Logarithmic Expressions to Exponential Expressions

Changing Exponential Statements to Logarithmic Statements

Change each exponential expression to an equivalent expression involving a logarithm.

(a)
$$5^8 = t$$

(a)
$$5^8 = t$$
 (b) $x^{-2} = 12$ (c) $e^x = 10$

(c)
$$e^x = 10$$

Changing Logarithmic Statements to Exponential Statements

Change each logarithmic expression to an equivalent expression involving an exponent.

(a)
$$y = \log_2 21$$

(b)
$$\log_{7} 12 = 6$$

(a)
$$y = \log_2 21$$
 (b) $\log_2 12 = 6$ (c) $\log_2 10 = a$

2 Evaluate Logarithmic Expressions

Finding the Exact Value of a Logarithmic Expression

$$(a)\log_3 81 \qquad (b)\log_2 \frac{1}{8}$$

3 Determine the Domain of a Logarithmic Function

Domain of the logarithmic function = Range of the exponential function = $(0, \infty)$

Range of the logarithmic function = Domain of the exponential function = $(-\infty, \infty)$

 $y = \log_a x$ (defining equation: $x = a^y$)

Domain: $0 < x < \infty$ Range: $-\infty < y < \infty$

Finding the Domain of a Logarithmic Function

Find the domain of each logarithmic function.

$$(a) f(x) = \log_3(x-2) \qquad (b) F(x) = \log_2\left(\frac{x+3}{x-1}\right)$$

$$(c) h(x) = \log_2 |x-1|$$
 $(d) g(x) = \log_{\frac{1}{2}} x^2$

4 Graph Logarithmic Functions

Properties of the Logarithmic Function $f(x) = \log_a x$

- 1. The domain is the set of positive real numbers; the range is the set of all real numbers.
- 2. The x-intercept of the graph is 1. There is no y-intercept.
- 3. The y-axis (x = 0) is a vertical asymptote of the graph.
- **4.** A logarithmic function is decreasing if 0 < a < 1 and increasing if a > 1.
- **5.** The graph of f contains the points (1,0), (a,1), and $\left(\frac{1}{a},-1\right)$.
- 6. The graph is smooth and continuous, with no corners or gaps.

Natural Logarithm Function

 $y = \ln x$ if and only if $x = e^y$

X	Υz	
*1 0.5 1 2.7183 3	ERROR 6931 0 .69315 1	
Yz B ln(X)		

Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = 3\ln(x-1)$.
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

$y = \log x$ if and only if $x = 10^y$

Graphing a Logarithmic Function and Its Inverse

- (a) Find the domain of the logarithmic function $f(x) = -2\log(x+2)$
- (b) Graph f.
- (c) From the graph, determine the range and vertical asymptote of f.
- (d) Find f^{-1} , the inverse of f.
- (e) Use f^{-1} to confirm the range of f found in part (c). From the domain of f, find the range of f^{-1} .
- (f) Graph f^{-1} .

5 Solve Logarithmic Equations

Solving a Logarithmic Equation

Solve:
$$(a) \log_2 (2x+1) = 3$$
 $(b) \log_x 343 = 3$

Using Logarithms to Solve Exponential Equations

Solve: $2e^{3x} = 6$

EXAMPLE Alcohol and Driving

The blood alcohol concentration (BAC) is the amount of alcohol in a person's bloodstream. A BAC of 0.04% means that a person has 4 parts alcohol per 10,000 parts blood in the body. Relative risk is defined as the likelihood of one event occurring divided by the likelihood of a second event occurring. For example, if an individual with a BAC of 0.02% is 1.4 times as likely to have a car accident as an individual who has not been drinking, the relative risk of an accident with a BAC of 0.02% is 1.4. Recent medical research suggests that the relative risk R of having an accident while driving a car can be modeled by the equation

$$R = e^{kx}$$

where x is the percent of concentration of alcohol in the bloodstream and k is a constant.

- (a) Research indicates that the relative risk of a person having an accident with a BAC of 0.02% is 1.4. Find the constant k in the equation.
- (b) Using this value of k, what is the relative risk if the concentration is 0.17%?
- (c) Using this same value of k, what BAC corresponds to a relative risk of 100?
- (d) If the law asserts that anyone with a relative risk of 5 or more should not have driving privileges, at what concentration of alcohol in the bloodstream should a driver be arrested and charged with a DUI (driving under the influence)?

SUMMARY Properties of the Logarithmic Function

$$f(x) = \log_a x, \quad a > 1$$

 $(y = \log_a x \text{ means } x = a^y)$

Domain: the interval $(0, \infty)$; Range: the interval $(-\infty, \infty)$

x-intercept: 1; y-intercept: none; vertical asymptote: x = 0 (y-axis); increasing; one-to-one

See Figure 44(a) for a typical graph.

$$f(x) = \log_a x$$
, $0 < a < 1$
 $(y = \log_a x \text{ means } x = a^y)$

Domain: the interval $(0, \infty)$; Range: the interval $(-\infty, \infty)$

x-intercept: 1; y-intercept: none; vertical asymptote: x = 0 (y-axis); decreasing; one-to-one

See Figure 44(b) for a typical graph.

Figure 44

