Section 6.5

Properties of Logarithms

Work with the Properties of Logarithms

Establishing Properties of Logarithms

(a) Show that $\log_a 1 = 0$. (b) Show that $\log_a a = 1$.

THEOREM

Properties of Logarithms

In the properties given next, M and a are positive real numbers, $a \neq 1$, and r is any real number.

The number $\log_a M$ is the exponent to which *a* must be raised to obtain *M*. That is,

$$a^{\log_a M} = M$$

(1)

The logarithm to the base a of a raised to a power equals that power. That is,

$$\log_a a^r = r$$

(2)

EXAMPLE

Using Properties (1) and (2)

(a) $3^{\log_3 18}$ (b) $2^{\log_2(-5)}$ (c) $\log_{\frac{1}{2}} \left(\frac{1}{2}\right)^{20}$ (d) $\ln e^3$

THEOREM

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, with $a \neq 1$, and r is any real number.

The Log of a Product Equals the Sum of the Logs

$$\log_a(MN) = \log_a M + \log_a N$$

The Log of a Quotient Equals the Difference of the Logs

$$\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N \tag{4}$$

The Log of a Power Equals the Product of the Power and the Log

$$\log_a M^r = r \log_a M$$

(5)

2 Write a Logarithmic Expression as a Sum or Difference of Logarithms

EXAMPLE

Writing a Logarithmic Expression as a Sum of Logarithms $\begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & 3 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{pmatrix}$

Write $\log_2(x^2\sqrt[3]{x-1})$, x>1, as a sum of logarithms.

Express all powers as factors.

Writing a Logarithmic Expression as a Difference of Logarithms

Write $\log_6 \frac{x^4}{(x^2+3)^2}$, $x \neq 0$, as a difference of logarithms.

Express all powers as factors.

EXAMPLE Writing a Logarithmic Expression as a Sum and Difference of Logarithms

Write $\ln \frac{x^3 \sqrt{x-2}}{(x+1)^2}$, x > 2, as a sum and difference of logarithms.

Express all powers as factors.

3 Write a Logarithmic Expression as a Single Logarithm

Writing Expressions as a Single Logarithm

Write each of the following as a single logarithm. (a) $3\ln 2 + \ln(x^2) + 2$

$$(b)\frac{1}{2}\log_a 4 - 2\log_a 5$$

$$(c) - 2\log_a 3 + 3\log_a 2 - \log_a (x^2 + 1)$$

Theorem

Properties of Logarithms

In the following properties, M, N, and a are positive real numbers, with $a \neq 1$.

If
$$M = N$$
, then $\log_a M = \log_a N$.
If $\log_a M = \log_a N$, then $M = N$.

4 Evaluate Logarithms Whose Base Is Neither 10 nor e

Approximating a Logarithm Whose Base Is Neither 10 nor e

Approximate $\log_3 12$. Round answer to four decimal places.

Theorem

Change-of-Base Formula

If $a \neq 1, b \neq 1$, and M are positive real numbers, then

$$\log_a M = \frac{\log_b M}{\log_b a}$$

$$\log_a M = \frac{\log M}{\log a}$$
 and $\log_a M = \frac{\ln M}{\ln a}$

Using the Change-of-Base Formula

Approximate: (a) $\log_7 35$

5 Graph Logarithmic Functions Whose Base Is Neither 10 Nor e

Graphing a Logarithmic Function Whose Base Is Neither 10 Nor e

Use a graphing utility to graph $y = \log_5 x$.

Summary

Properties of Logarithms

In the list that follows, a > 0, $a \neq 1$, and b > 0, $b \neq 1$; also, M > 0 and N > 0. **Definition** $y = \log_a x \text{ means } x = a^y$

Properties of logarithms

 $\log_a 1 = 0; \ \log_a a = 1$ $a^{\log_a M} = M; \quad \log_a a^r = r$ $\log_a(MN) = \log_a M + \log_a N$ $\log_a\left(\frac{M}{N}\right) = \log_a M - \log_a N$ $\log_a M^r = r \log_a M$ If M = N, then $\log_a M = \log_a N$. If $\log_a M = \log_a N$, then M = N. $\log_a M = \frac{\log_b M}{\log_b a}$

Change-of-Base Formula