Section 6.7 Financial Models

1 Determine the Future Value of a Lump Sum of Money

Simple Interest Formula

If a principal of *P* dollars is borrowed for a period of *t* years at a per annum interest rate *r*, expressed as a decimal, the interest *I* charged is

$$I = Prt$$

Interest charged according to formula (1) is called simple interest.

Annually: Once per year

Semiannually: Twice per year

Quarterly: Four times per year

Monthly: 12 times per year

Daily: 365 times per year

Computing Compound Interest

A credit union pays interest of 4% per annum compounded quarterly on a certain savings plan. If \$2000 is deposited in such a plan and the interest is left to accumulate, how much is in the account after 1 year?

Theorem

Compound Interest Formula

The amount A after t years due to a principal P invested at an annual interest rate r compounded n times per year is

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Exploration

To see the effects of compounding interest monthly on an initial deposit of \$1, graph $Y_1 = \left(1 + \frac{r}{12}\right)^{12x}$ with r = 0.06and r = 0.12 for $0 \le x \le 30$. What is the future value of \$1 in 30 years when the interest rate per annum is r = 0.06(6%)? What is the future value of \$1 in 30 years when the interest rate per annum is r = 0.12 (12%)? Does doubling the interest rate double the future value?

Comparing Investments Using Different Compounding Periods

Investing \$1000 at an annual rate of 10% compounded annually, semiannually, quarterly, monthly, and daily will yield the following amounts after 1 year:

Annual compounding
$$(n = 1)$$
: $A = P \cdot (1 + r)$
= $(\$1000)(1 + 0.10) = \1100.00

Semiannual compounding
$$(n = 2)$$
: $A = P \cdot \left(1 + \frac{r}{2}\right)^2$
= $(\$1000)(1 + 0.05)^2 = \1102.50

Quarterly compounding
$$(n = 4)$$
: $A = P \cdot \left(1 + \frac{r}{4}\right)^4$
= $(\$1000)(1 + 0.025)^4 = \1103.81

Monthly compounding
$$(n = 12)$$
: $A = P \cdot \left(1 + \frac{r}{12}\right)^{12}$
= $(\$1000)(1 + 0.00833)^{12} = \1104.71

Daily compounding
$$(n = 365)$$
: $A = P \cdot \left(1 + \frac{r}{365}\right)^{365}$
= $(\$1000)(1 + 0.000274)^{365} = \1105.16

$$A = P \cdot \left(1 + \frac{r}{n}\right)^n = P \cdot \left(1 + \frac{1}{\frac{n}{r}}\right)^n = P \cdot \left[\left(1 + \frac{1}{\frac{n}{r}}\right)^{n/r}\right]^r = P \cdot \left[\left(1 + \frac{1}{h}\right)^h\right]^r$$

$$h = \frac{n}{r}$$

$\left(1+\frac{r}{n}\right)^n$				
	n = 100	n = 1000	n = 10,000	e ^r
r = 0.05	1.0512580	1.0512698	1.051271	1.0512711
r = 0.10	1.1051157	1.1051654	1.1051704	1.1051709
r = 0.15	1.1617037	1.1618212	1.1618329	1.1618342
r = 1	2.7048138	2.7169239	2.7181459	2.7182818

Theorem

Continuous Compounding

The amount A after t years due to a principal P invested at an annual interest rate r compounded continuously is

$$A = Pe^{rt}$$

Using Continuous Compounding

Find the amount A that results from investing a principal P of \$2000 at an annual rate r of 8% compounded continuously for a time t of 1 year.

$$A = Pe^{rt}$$

2 Calculate Effective Rates of Return

THEOREM

Effective Rate of Interest

The effective rate of interest r_e of an investment earning an annual interest rate r is given by

Compounding *n* times per year:
$$r_e = \left(1 + \frac{r}{n}\right)^n - 1$$

Continuous compounding:
$$r_e = e^r - 1$$

Computing the Effective Rate of Interest—Which Is the Best Deal?

Suppose you want to open a money market account. You visit three banks to determine their money market rates. Bank A offers you 5% compounded monthly and Bank B offers you 5.04% compounded quarterly. Bank C offers 4.9% compounded continuously. Determine which bank is offering the best deal.

3 Determine the Present Value of a Lump Sum of Money

Theorem

Present Value Formulas

The present value P of Λ dollars to be received after t years, assuming a per annum interest rate r compounded n times per year, is

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt}$$

If the interest is compounded continuously, then

$$P = Ae^{-rt}$$

Computing the Value of a Zero-coupon Bond

A zero-coupon (noninterest-bearing) bond can be redeemed in 10 years for \$1000. How much should you be willing to pay for it now if you want a return of

- (a) 7% compounded monthly?
- (b) 6% compounded continuously?

$$P = A \cdot \left(1 + \frac{r}{n}\right)^{-nt}$$

$$P = Ae^{-rt}$$

4 Determine the Rate of Interest or Time Required to Double a Lump Sum of Money

Rate of Interest Required to Double an Investment

What annual rate of interest compounded quarterly should you seek if you want to double your investment in 6 years?

$$A = P \cdot \left(1 + \frac{r}{n}\right)^{nt}$$

Time Required to Double or Triple an Investment

- (a) How long will it take for an investment to double in value if it earns 6% compounded continuously?
- (b) How long will it take to triple at this rate?