Section 7.1 Angles and Their Measure

Counterclockwise rotation Positive angle

Clockwise rotation Negative angle Counterclockwise rotation Positive angle

(a) θ lies in quadrant II

Drawing an Angle

Draw each angle.

1 Convert between Decimals and Degrees, Minutes, Seconds Forms for Angles

1 counterclockwise revolution =
$$360^{\circ}$$

 $1^{\circ} = 60'$ $1' = 60''$

Converting between Degrees, Minutes, Seconds Form and Decimal Form

(a) Convert $45^{\circ}10'15''$ to decimal in degrees.

Round the answer to four decimal places.

(b) Convert 21.256° to the D°M'S" form.Round the answer to the nearest second.

2 Find the Arc Length of a Circle

Theorem

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$s = r\theta$$

Finding the Length of an Arc of a Circle

Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

$$s = r\theta$$

3 Convert from Degrees to Radians and from Radians to Degrees

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

EXAMPLE Converting from Degrees to Radians

Convert each angle in degrees to radians.

(a) 80 (b) 140 (c) -30 (d) 100

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

Converting Radians to Degrees

Convert each angle in radians to degrees.

(a)
$$\frac{2\pi}{3}$$
 radians (b) $\frac{5\pi}{6}$ radians (c) $\frac{-3\pi}{5}$ radians

(d)
$$\frac{8\pi}{3}$$
 radians

(e) 2 radians

1 degree =
$$\frac{\pi}{180}$$
 radian 1 radian = $\frac{180}{\pi}$ degrees

Degrees	0°	30°	45°	60°	90°	120°	135°	150°	180°
Radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π
Degrees		210°	225°	240°	270°	300°	315°	330°	360°
Radians		$\frac{7\pi}{6}$	$\frac{5\pi}{4}$	$\frac{4\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{3}$	$\frac{7\pi}{4}$	$\frac{11\pi}{6}$	2π

EXAMPLE Finding the Distance between Two Cities

See Figure 13(a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 13(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow (48°9′ north latitude) and Albuquerque (35°5′ north latitude). Assume that the radius of Earth is 3960 miles.

4 Find the Area of a Sector of a Circle

Area of a Sector

The area A of the sector of a circle of radius r formed by a central angle of θ radians is

$$A = \frac{1}{2}r^2\theta$$

Finding the Area of a Sector of a Circle

Find the area of the sector of a circle of radius 5 feet formed by an angle of 40 . Round the answer to two decimal places.

5 Find the Linear Speed of an Object Traveling in Circular Motion

$$v = \frac{s}{t}$$

Linear Speed

$$\omega = \frac{\theta}{t}$$

Angular Speed

$$v = r\omega$$

EXAMPLE Finding Linear Speed

Earth rotates on an axis through its poles. The distance from the axis to a location on Earth 40 north latitude is about 3033.5 miles. Therefore, a location on Earth at 40 north latitude is spinning on a circle of radius 3033.5 miles. Compute the linear speed on the surface of Earth at 40 north latitude.

