Section 7.1
Angles and Their Measure
(a) \(\theta \) is in standard position; \(\theta \) is positive

(b) \(\theta \) is in standard position; \(\theta \) is negative
(a) θ lies in quadrant II

(b) θ lies in quadrant IV

(c) θ is a quadrant angle
Degrees

(a) 1 revolution counterclockwise, 360°

(b) right angle, $\frac{1}{4}$ revolution counter-clockwise, 90°

(c) straight angle, $\frac{1}{2}$ revolution counter-clockwise, 180°
EXAMPLE

Drawing an Angle

Draw each angle.

(a) 45° (b) -90° (c) 225° (d) 405°
OBJECTIVE 1

1. Convert between Decimals and Degrees, Minutes, Seconds Forms for Angles
1 counterclockwise revolution = 360°

1° = 60′

1′ = 60″
Converting between Degrees, Minutes, Seconds Form and Decimal Form

(a) Convert 45°10'15" to decimal in degrees.
Round the answer to four decimal places.

(b) Convert 21.256° to the D°M'S" form.
Round the answer to the nearest second.
Radians
OBJECTIVE 2

2 Find the Arc Length of a Circle
\[
\frac{\theta}{\theta_1} = \frac{s}{s_1}
\]
Theorem

Arc Length

For a circle of radius r, a central angle of θ radians subtends an arc whose length s is

$$s = r\theta$$
EXAMPLE

Finding the Length of an Arc of a Circle

Find the length of the arc of a circle of radius 4 meters subtended by a central angle of 0.5 radian.

\[s = r\theta \]
OBJECTIVE 3

3 Convert from Degrees to Radians and from Radians to Degrees
1 revolution = \(2\pi\) radians

\[180^\circ = \pi \text{ radians} \]

1 degree = \(\frac{\pi}{180}\) radian \[1 \text{ radian} = \frac{180}{\pi} \text{ degrees} \]
EXAMPLE Converting from Degrees to Radians

Convert each angle in degrees to radians.

(a) 80 (b) 140 (c) -30 (d) 100

1 degree = \frac{\pi}{180} \text{ radian} \quad 1 \text{ radian} = \frac{180}{\pi} \text{ degrees}
EXAMPLE Converting Radians to Degrees

Convert each angle in radians to degrees.

(a) \(\frac{2\pi}{3} \) radians (b) \(\frac{5\pi}{6} \) radians (c) \(\frac{-3\pi}{5} \) radians

(d) \(\frac{8\pi}{3} \) radians (e) 2 radians

1 degree = \(\frac{\pi}{180} \) radian \hspace{1cm} 1 radian = \(\frac{180}{\pi} \) degrees
<table>
<thead>
<tr>
<th>Degrees</th>
<th>0°</th>
<th>30°</th>
<th>45°</th>
<th>60°</th>
<th>90°</th>
<th>120°</th>
<th>135°</th>
<th>150°</th>
<th>180°</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radians</td>
<td>0</td>
<td>$\frac{\pi}{6}$</td>
<td>$\frac{\pi}{4}$</td>
<td>$\frac{\pi}{3}$</td>
<td>$\frac{\pi}{2}$</td>
<td>$\frac{2\pi}{3}$</td>
<td>$\frac{3\pi}{4}$</td>
<td>$\frac{5\pi}{6}$</td>
<td>π</td>
</tr>
<tr>
<td>Degrees</td>
<td>210°</td>
<td>225°</td>
<td>240°</td>
<td>270°</td>
<td>300°</td>
<td>315°</td>
<td>330°</td>
<td>360°</td>
<td></td>
</tr>
<tr>
<td>Radians</td>
<td>$\frac{7\pi}{6}$</td>
<td>$\frac{5\pi}{4}$</td>
<td>$\frac{4\pi}{3}$</td>
<td>$\frac{3\pi}{2}$</td>
<td>$\frac{5\pi}{3}$</td>
<td>$\frac{7\pi}{4}$</td>
<td>$\frac{11\pi}{6}$</td>
<td>2π</td>
<td></td>
</tr>
</tbody>
</table>
EXAMPLE Finding the Distance between Two Cities

See Figure 13(a). The latitude of a location L is the angle formed by a ray drawn from the center of Earth to the Equator and a ray drawn from the center of Earth to L. See Figure 13(b). Glasgow, Montana, is due north of Albuquerque, New Mexico. Find the distance between Glasgow ($48^\circ 9'$ north latitude) and Albuquerque ($35^\circ 5'$ north latitude). Assume that the radius of Earth is 3960 miles.
OBJECTIVE 4

4 Find the Area of a Sector of a Circle
The area A of the sector of a circle of radius r formed by a central angle of θ radians is

$$A = \frac{1}{2}r^2\theta$$
Example

Finding the Area of a Sector of a Circle

Find the area of the sector of a circle of radius 5 feet formed by an angle of 40°. Round the answer to two decimal places.

\[A = \frac{1}{2} r^2 \theta \]
OBJECTIVE 5

Find the Linear Speed of an Object Traveling in Circular Motion
Linear Speed

\[v = \frac{s}{t} \]

Angular Speed

\[\omega = \frac{\theta}{t} \]

\[v = r\omega \]
Earth rotates on an axis through its poles. The distance from the axis to a location on Earth at 40° north latitude is about 3033.5 miles. Therefore, a location on Earth at 40° north latitude is spinning on a circle of radius 3033.5 miles. Compute the linear speed on the surface of Earth at 40° north latitude.