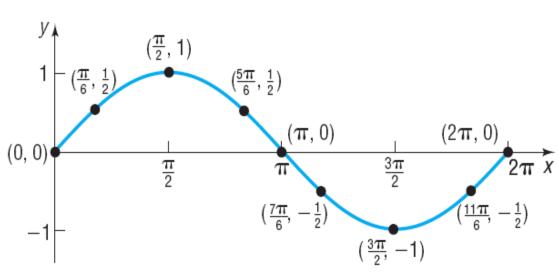
Section 7.6 Graphs of the Sine and Cosine Functions

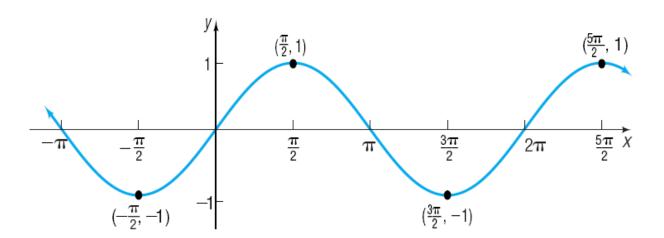
$$y = f(x) = \sin x$$
 $y = f(x) = \cos x$ $y = f(x) = \tan x$
 $y = f(x) = \csc x$ $y = f(x) = \cot x$

The Graph of the Sine Function $y = \sin x$

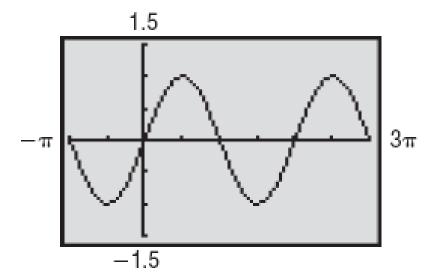
х	$y = \sin x$	(x, y)
0	0	(0, 0)
$\frac{\pi}{6}$	1/2	$\left(\frac{\pi}{6},\frac{1}{2}\right)$
$\frac{\pi}{2}$	1	$\left(\frac{\pi}{2}, 1\right)$
$\frac{5\pi}{6}$	1/2	$\left(\frac{5\pi}{6},\frac{1}{2}\right)$
π	0	$(\pi, 0)$
$\frac{7\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{7\pi}{6}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	-1	$\left(\frac{3\pi}{2},-1\right)$
$\frac{11\pi}{6}$	$-\frac{1}{2}$	$\left(\frac{11\pi}{6}, -\frac{1}{2}\right)$
2π	0	$(2\pi, 0)$



$$y = \sin x$$
, $0 \le x \le 2\pi$



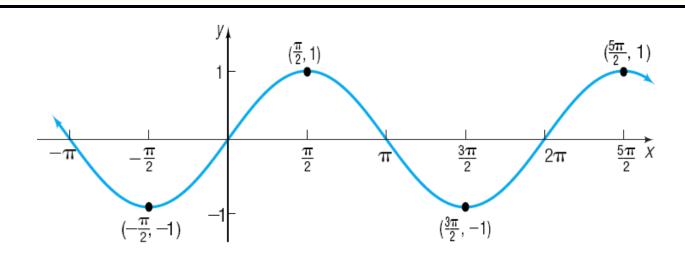
$$y = \sin x, -\infty < x < \infty$$



Properties of the Sine Function $y = \sin x$

- 1. The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The sine function is an odd function, as the symmetry of the graph with respect to the origin indicates.
- **4.** The sine function is periodic, with period 2π .
- **5.** The x-intercepts are ..., -2π , $-\pi$, 0, π , 2π , 3π ,...; the y-intercept is 0.
- **6.** The maximum value is 1 and occurs at $x = \dots, -\frac{3\pi}{2}, \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \dots;$

the minimum value is -1 and occurs at $x = \dots, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \frac{11\pi}{2}, \dots$



1 Graph Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

Graph $y = 5 \sin x$ using transformations. Use the graph to determine the domain and the range of $y = 5 \sin x$.

Graphing Functions of the Form $y = A \sin(\omega x)$ Using Transformations

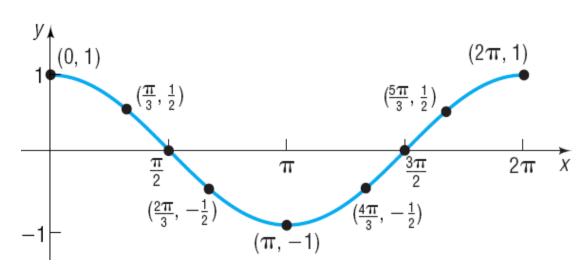
Graph
$$y = \frac{1}{2}\sin(-\pi x)$$
 using transformations.

Use the graph to determine the domain and the range of

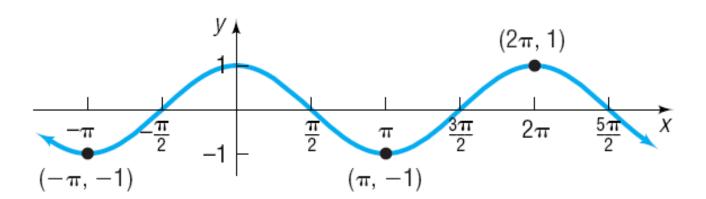
$$y = \frac{1}{2}\sin\left(-\pi x\right)$$

The Graph of the Cosine Function

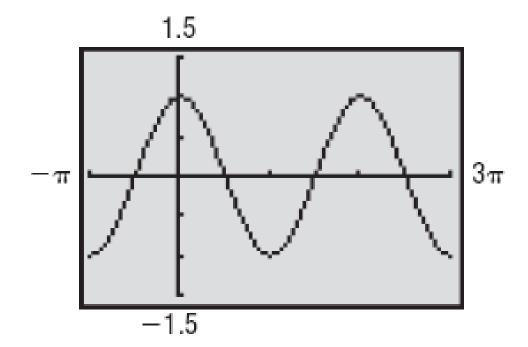
х	$y = \cos x$	(x, y)
0	1	(0, 1)
$\frac{\pi}{3}$	1/2	$\left(\frac{\pi}{3},\frac{1}{2}\right)$
$\frac{\pi}{2}$	0	$\left(\frac{\pi}{2}, 0\right)$
$\frac{2\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{2\pi}{3}, -\frac{1}{2}\right)$
π	-1	$(\pi, -1)$
$\frac{4\pi}{3}$	$-\frac{1}{2}$	$\left(\frac{4\pi}{3}, -\frac{1}{2}\right)$
$\frac{3\pi}{2}$	0	$\left(\frac{3\pi}{2},0\right)$
$\frac{5\pi}{3}$	$\frac{1}{2}$	$\left(\frac{5\pi}{3},\frac{1}{2}\right)$
2π	1	$(2\pi, 1)$



$$y = \cos x$$
, $0 \le x \le 2\pi$

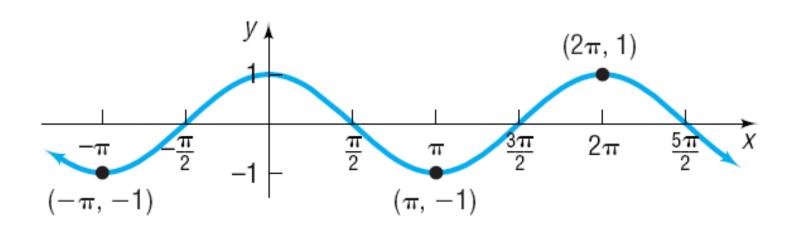


$$y = \cos x, -\infty < x < \infty$$



Properties of the Cosine Function

- **1.** The domain is the set of all real numbers.
- **2.** The range consists of all real numbers from -1 to 1, inclusive.
- **3.** The cosine function is an even function, as the symmetry of the graph with respect to the *y*-axis indicates.
- **4.** The cosine function is periodic, with period 2π .
- 5. The x-intercepts are ..., $-\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $\frac{5\pi}{2}$,...; the y-intercept is 1.
- **6.** The maximum value is 1 and occurs at $x = \dots, -2\pi, 0, 2\pi, 4\pi, 6\pi, \dots$; the minimum value is -1 and occurs at $x = \dots, -\pi, \pi, 3\pi, 5\pi, \dots$

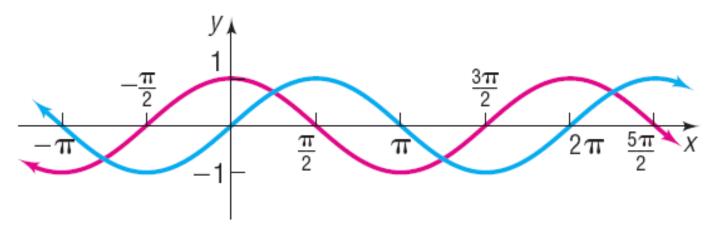


2 Graph Functions of the Form $y = A \cos(\omega x)$ Using Transformations

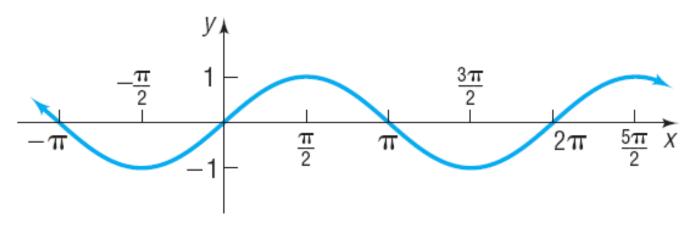
Graphing Functions of the Form $y = A \cos(\omega x)$ Using Transformations

Graph $y = -\cos(2x)$ using transformations. Use the graph to determine the domain and the range of $y = -\cos(2x)$.

Sinusoidal Graphs



(a)
$$y = \cos x$$
 $y = \cos (x - \frac{\pi}{2})$



(b)
$$y = \sin x$$

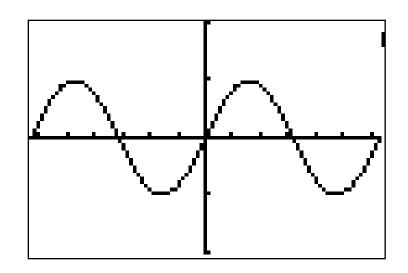
$$\sin x = \cos \left(x - \frac{\pi}{2} \right)$$

— Seeing the Concept —

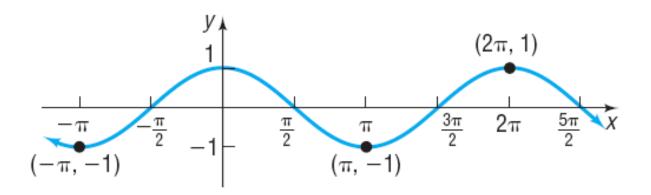
Graph
$$Y_1 = \sin x$$
 and $Y_2 = \cos\left(x - \frac{\pi}{2}\right)$.

How many graphs do you see?

```
Plot1 Plot2 Plot3
\Y1目sin(X)
\Y2目cos(X-π/2)■
\Y3=
\Y4=
\Y5=
\Y6=
\Y7=
```

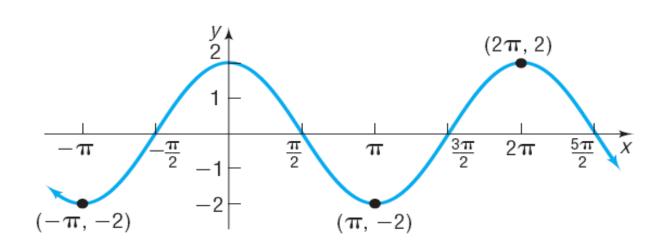


3 Determine the Amplitude and Period of Sinusoidal Functions



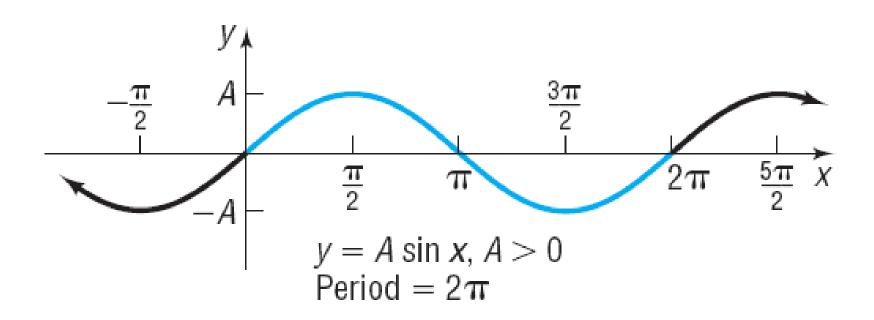
$$y = \cos x$$

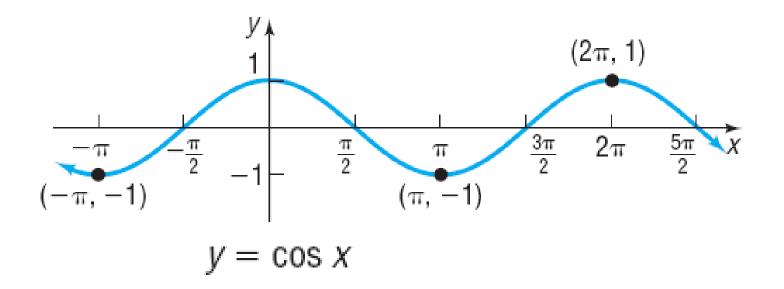
Multiply by 2; Vertical stretch by a factor of 2

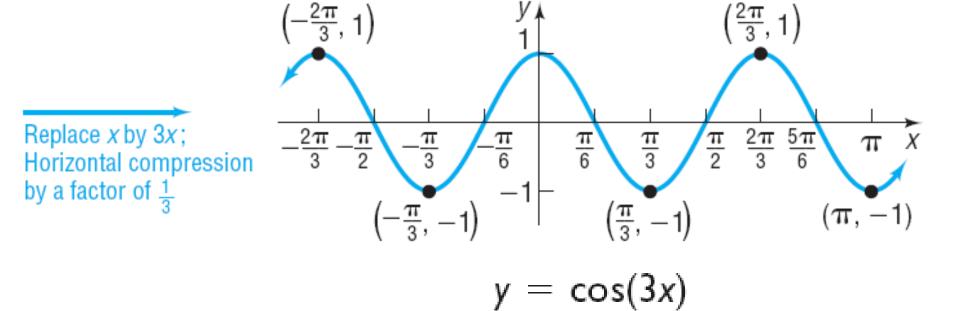


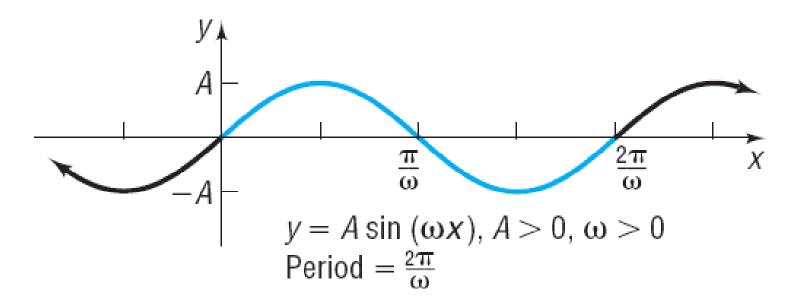
$$y = 2 \cos x$$

Amplitude









Theorem

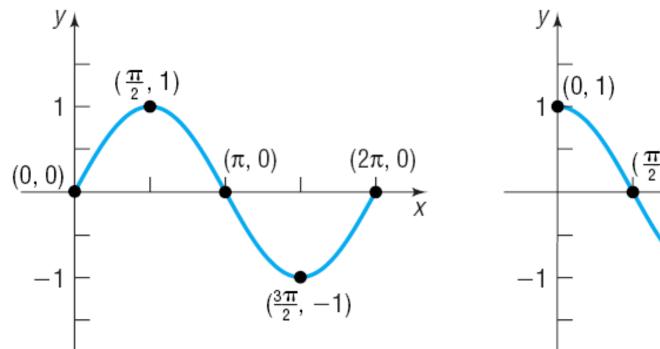
If $\omega > 0$, the amplitude and period of $y = A \sin(\omega x)$ and $y = A \cos(\omega x)$ are

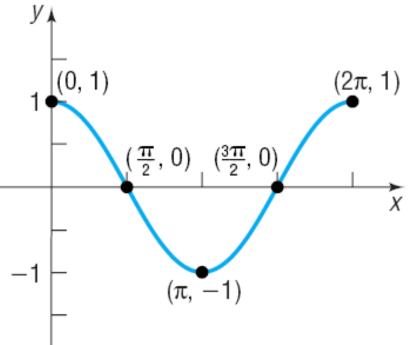
Amplitude =
$$|A|$$
 Period = $T = \frac{2\pi}{\omega}$

Finding the Amplitude and Period of a Sinusoidal Function

Determine the amplitude and period of $y = -4 \cos(3x)$

4 Graph Sinusoidal Functions Using Key Points





How to Graph a Sinusoidal Function Using Key Points

Graph $y = 4 \sin(2x)$ using key points.

SUMMARY Steps for Graphing a Sinusoidal Function of the Form $y = A \sin(\omega x)$ or $y = A \cos(\omega x)$ Using Key Points

- STEP 1: Determine the amplitude and period of the sinusoidal function.
- Step 2: Divide the interval $\left[0, \frac{2\pi}{\omega}\right]$ into four subintervals of the same length.
- STEP 3: Use the endpoints of these subintervals to obtain five key points on the graph.
- STEP 4: Plot the five key points with a sinusoidal graph to obtain the graph of one cycle. Extend the graph in each direction to make it complete.

Graphing a Sinusoidal Function Using Key Points

Graph
$$y = -5\cos\left(-\frac{\pi}{2}x\right)$$
 using key points.

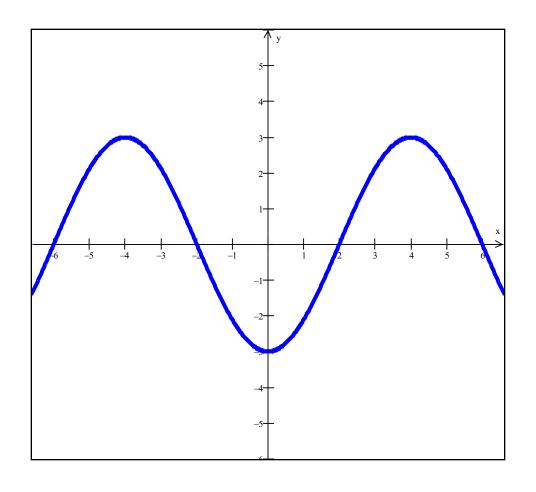
Graphing a Sinusoidal Function Using Key Points

Graph
$$y = 3\cos\left(\frac{\pi}{2}x\right) + 1$$
 using key points.

5 Find an Equation for a Sinusoidal Graph

Finding an Equation for a Sinusoidal Graph

Find an equation for the graph shown



Finding an Equation for a Sinusoidal Graph

Find an equation for the graph shown

