Section 9.3 The Law of Cosines

- Case 3: Two sides and the included angle are known (SAS).
- **Case 4:** Three sides are known (SSS).

Theorem

Law of Cosines

For a triangle with sides a, b, c and opposite angles A, B, C, respectively,

$$c^{2} = a^{2} + b^{2} - 2ab \cos C$$

 $b^{2} = a^{2} + c^{2} - 2ac \cos B$
 $a^{2} = b^{2} + c^{2} - 2bc \cos A$

(a) Angle C is acute

(b) Angle C is obtuse

Theorem

Law of Cosines

The square of one side of a triangle equals the sum of the squares of the other two sides minus twice their product times the cosine of their included angle.

OBJECTIVE 1

1 Solve SAS Triangles

EXAMPLE

Using the Law of Cosines to Solve a SAS Triangle

Solve the triangle: b = 5, c = 8, A = 35

OBJECTIVE 2

2 Solve SSS Triangles

EXAMPLE

Using the Law of Cosines to Solve a SSS Triangle

Solve the triangle: a = 6, b = 8, c = 5

OBJECTIVE 3

3 Solve Applied Problems

Correcting a Navigational Error

A motorized sailboat leaves Naples, Florida, bound for Key West, 150 miles away. Maintaining a constant speed of 15 miles per hour, but encountering heavy crosswinds and strong currents, the crew finds, after 4 hours, that the sailboat is off course by 20°.

- (a) How far is the sailboat from Key West at this time?
- (b) Through what angle should the sailboat turn to correct its course?
- (c) How much time has been added to the trip because of this? (Assume that the speed remains at 15 miles per hour.)

